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i=-. THERMAL CONVECTION IN SNOW'.-.

-

D.J. Powers, S.C. Colbeck and K. O'Neill.

HERINTRODUCTION C ENO

"I The size and shape of grains and the density of snow greatly affect all of its material properties.
Snow covers of similar density and grain size may have widely different crystal shapes, ranging from
rounded to sharply angular. The range over which the physical properties vary is quite large.

It is widely known that when a low density dry snow is subjected to a temperature gradient of
at least 0.1C/cm, many of the grains will develop facets. A dramatic loss of strength usually ac-

P... companies this rapid recrystallization and this strength loss is commonly thought to be a factor in
the release of avalanches. Efforts to model crystal growth in snow have so far focused solely on
vapor diffusion among the crystals. However, the temperature gradients that drive the diffusion
of water vapor also establish air density gradients that may lead to convective flows of air. These

'- " flows, if they occur, would certainly have a large impact on the flux of heat and vapor and there-
fore might affect the metamorphism of snow.

Snow metamorphism
Dry snow metamorphism is often classified as equitemperature or temperature gradient. The

first term refers to conditions under which grains become more rounded and sintering processes
increase the size of bonds between grains. It is now recognized that these processes do not ever
occur under isothermal conditions, as the name would imply. Furthermore, when nature imposes
even a slight gradient on the snow cover the processes are greatly accelerated. Colbeck (1982) re-
fers to the rounded grains as the equilibrium form, which is probably a better description than
equitemperature.

Temperature gradient metamorphism is characterized by the growth of large angular or faceted
crystals. Actually, temperature gradient metamorphism is also a misnomer, since large faceted
crystals occur only when large temperature gradients are applied to low density snow. A loss of
strength frequently accompanies the growth of large faceted grains, especially when hollow depth
hoar crystals form. These grow most readily in low density snows subjected to very large temper-
ature gradients. More solid faceted crystals grow at lower temperature gradients, or in higher den-
sity snows (Akitaya 1974, Marbouty 1980).

Mass transfer by diffusion in snow
Here we are primarily concerned with metamorphism driven by strong temperature gradients ..-

because the temperature gradients that drive depth hoar growth could also drive the convective
flows that are the subject of the present work.

Metamorphism in dry snow occurs by the transport of water vapor. Vapor diffuses from areas
of high vapor density to low vapor density, or it may be carried by convective currents of air. In

. . . . . .. . . .
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this section, we discuss only the diffusion process. Vapor pressure gradients exist in snow because
of temperature gradients or curvature differences, or both. Vapor pressure is higher over warmer
ice and over convexly curved ice. When temperature gradients are low, curvature effects are im-
portant, and concave sections will begin to fill in by vapor deposition. However, at the large val-
ues of temperature gradient where depth hoar grows, curvature effects are negligible, and the
transport of vapor is governed by the temperature field. Strong gradients occur for prolonged
periods most commonly in cold climates with shallow snow covers (less than 100 cm).

If we think of a vertical coordinate as positive upwards, the gradient will be negative. Hence-
forth, a large gradient refers to a large absolute value of the negative gradient.

Early attempts to model depth hoar growth (i.e., Giddings and LaChapelle 1962) used a one-

dimensional diffusion equation to describe the flux of vapor through dry snow: -

iz -Do l

where D is a diffusion coefficient. Giddings and LaChapelle tried to calculate crystal growth rates
assuming that all vapor stopped at one level. This assumption is generally meaningless, although
eq 1 can be used to represent mass fluxes in one dimension. Experimental data from Yosida (1955)
and Yen (1963) show a rate of vapor transport four or five times greater than the Giddings and La-
Chapelle model predicts. Yosida formulated his results in an equation similar to eq 1, using an ef-
fective diffusivity coefficient to describe the flux of vapor. He found Deff equal to 0.85 cm2 /s

and invariant with snow density over the range of 0.08 < p, < 0.51 g/cm 3 . Yen confirmed these
results, although he tested only densities in the range of 0.38 < Ps < 0.48 g/cm 3 . Trabant and
Benson (1972) calculated flux rates in the field and found them to be about an order of magni-
tude greater than they calculated using eq 1. Although they did not calculate an effective diffu-
sivity, their results indicate an effective diffusivity about a factor of 2 greater than that of Yosida.

The reason for the high observed flux rates is not entirely clear. Trabant and Benson suggest
that thermal convection may be important, and this may certainly be part of the answer. In Yo-
sida's experiments the geometry would make convection unlikely. The common observation of
rapidly growing depth hoar in shallow layers of snow where convection is unlikely also points to
the need for some other explanation for the high flux rates.

Yosida supposed that vapor transport occurred by a "hand-to-hand" mechanism, i.e., that mass
was transferred by diffusion from grain to grain and not along vertical air channels. Since ice is a

much better conductor than air, temperature gradients in the air spaces may be much higher than
the average gradient in the snow, and thus local fluxes may be much higher than that predicted on
the basis of an average temperature gradient. This is part of the explanation for the high values of
Deff. Colbeck (1983) quantified this effect in an effort to model grain growth. His model did show
reasonable growth rates, although he was forced to arbitrary assumptions about snow stereology be-
cause of a lack of good data. His model has not been applied to calculate macroscopic mass flux
rates, and thus it is not yet certain just what the quantitative effects of hand-to-hand transfer are
on those mass fluxes.

Colbeck's model showed that grain growth is primarily attributable to a coupling between verti-
cally aligned particles, just as Yosida suggested. The rate of mass movement between the particles
is equal to the rate of mass gain by the growing particle. Thus grains do not grow because of a
macroscopic redistribution of mass between regions of the snow cover as described in some flux
divergence models. The particle-to-particle mechanism explains the experimental observation of
rapid grain growth without significant snow density change (Marbouty 1980). The relatively in- " -

tense vapor transport between coupled grains is included in the overall macroscopic vapor flux de-
scribed by eq 1, with an effective diffusion coefficient. We study the macroscopic fluxes and their

* - possible enhancement by convection in order to see how the convective fluxes affect the grain-scale
vapor transport that controls snow metamorphism.

IM-- " 5p - ': . .. " w ................................................ ,,,...... . ----- ----



Heat transfer
Typically, heat transfer through snow is modeled by a conduction equation of the form

aT(2
q =-k- (2)

where k is a thermal conductivity. It is customary to use an effective thermal conductivity to ac-
count for the heat conduction through both the fluid and solid in porous media. In snow we must
also consider the latent heat carried by the flux of vapor. The transport of heat ascribable to vapor
diffusion is given by

a,. aTVZ f aT LD (3) '?
qvz =-L Deff T~ (z"3)'.-

where L is the latent heat of sublimation.
Since this flux is also proportional to the temperature gradient, all contributions to heat flow

may be lumped into an effective thermal conductivity, as described by eq 2. Data on these effec-
tive thermal conductivities, summarized by Mellor (1977), show a great deal of scatter for any
given density. In part this may be attributable to the temperature dependence of the vapor term.
The experimental data of Pitman and Zuckerman (1967) show the expected trends with tempera-
ture; however, the magnitude of the change in keff with temperature that they observed is too
great to be explained by the temperature dependence of the vapor diffusion term.

A basic understanding of the relative contributions of conduction through ice, of conduction
through air and of vapor diffusion to the total transport of heat is lacking. Generally, it is assumed
that conduction through the air is negligible, since the thermal conductivity of air is 100 times less
than that of ice. However, the aforementioned notion of exaggerated gradients in the voids be-
tween particles, coupled with the high porosity of snow, leads us to estimate that the conduction
of heat through the air spaces may be on the order of 10% of that through the ice lattice.

The contribution of vapor transport can be estimated from eq 3, defining k, as the vapor diffu-
sion equivalent of thermal conductivity, or

kv= L Deff-. (4)

where k, is a function of temperature, as illus-
trated in Figure 1. At OC, using Yosida's D 3-" "

of 0.85 cm2 /s, we find kv = 2.4x 10-4 cal/cm
s OC. Since total thermal conductivities of less D=10 cmn2 /s
than this are observed, we must be somewhat 2 2

skeptical of either Yosida's notion that Deff is 0 05

not a function of density, or of the thermal
conductivity data (or of both). It is reasonable 22
that Deff is a function of density, since crystal
growth rates are strongly dependent on snow 0

density. 0 -10 -20 -30
T (C0

In summary, for lower density snows, con-
duction through air is probably not negligible, Figure 1. Contributions of vapor diffusion

while the transfer of latent heat is probably very to heat transport in terms of thermal con-

important. In higher density snows, where the ductivity k, for various values of effective

total thermal conductivity is greater, the po- diffusivity D.
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rosity is less and temperature differences among neighboring grains are less, conduction through
the ice lattice may dominate the heat transfer process.

BACKGROUND-POROUS MEDIA

This section examines the developments that have taken place in the study of thermal convec-
tion in porous media. The impetus for much of this work has been an interest in petroleum and
geothermal reservoirs. However, much of the work is of a basic nature, and may be applied to
snow. The aim here is to outline the fundamental principles that govern thermal convective flows
in porous media and to summarize the pertinent results.

Structre of thermal convection
Convective flows occur when buoyancy forces, driven by density gradients, are sufficient to

overcome viscous drag. As warm air rises, cold air from above must descend for continuity. Ther-
mal convection can thus be thought of as nature's way of trying to relieve unstable density gradi-
ents.

Circulation patterns in a horizontal layer heated from below appear commonly in two forms.
One form, commonly called two-dimensional convection, consists of rolls (see Fig. 2) that are
very long in one direction, and are roughly equal in the other two dimensions. The other form is
three-dimensional convection, in which the cell takes a hexagonal pattern when viewed from
above. The cell size at the onset of convection was calculated for both forms by Combarnous and
Bories (1975) (Fig. 2).

When the porous layer is confined laterally, the dimensions of the convective cells are governed
by the dimensions of the container. Beck (1972), and Tewari and Torrance (1981) have predict-
ed the preferred cell size at the onset of convection as a function of container dimensions for the
closed-top and open-top cases respectively. Cheng (1978), in his review paper, draws two general
conclusions about the results of Beck, and these seem to apply equally well to the results of Tew-
ari. First, when one of the lateral dimensions is less than the vertical dimension, two dimensional
convection is the rule. Secondly, the number and direction of rolls is governed by the tendency
for the width of the roll to be nearly equal to its height. We can also say that when the upper
boundary is permeable the lateral dimensions of the convective cell are about one and one-half
times greater than for the closed top case, all other things being equal.

I I I

(0) (b)

Figure 2. Longitudinal roll and hexagonal cell (after Combarnous and Bories 1975). -
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The above results strictly apply only at the onset of convection. When convection is "mild,"

these results are probably a good approximation. However, as convection intensifies, the pre-

ferred cell size can be greatly reduced. Numerical experiments by Straus and Schubert (1979)
show that for random initial conditions, either two- or three-dimensional convection can occur.

The mode that would maximize heat transfer is not necessarily the one that results.

Rayleigh number
The flow of fluids through a porous medium is described by Darcy's law, which is an empiri-

cal relation developed by Darcy from his classic set of experiments. Two assumptions are made

here: that the fluid is Boussinesq, meaning that variations in fluid properties are negligible except
where buoyancy terms are involved, and that it is incompressible, which implies that density will , 1

not vary directly as a result of the flow.
From a nondimensional form of Darcy's law (derived more completely in the Modeling section)

comes an important nondimensional parameter known as the Rayleigh number, defined as

Ra p~g3ATHKR= (5). I
/1K

where K is km/(ppC)f and po is the fluid density at a reference temperature. The Rayleigh num-
ber, along with the boundary conditions, governs both the onset of convection and its intensity.

The definition of the temperature difference in the Rayleigh number depends on the thermal

boundary conditions at the upper and lower surfaces. When the boundary conditions are con-
stant temperatures at both upper and lower surfaces, then the AT is just the difference between
those temperatures. However, we are also interested in lower boundaries with a constant heat
flux (q). When this is the case, we define the temperature difference as qH/km, which is the tem-

perature difference that would be observed if convection were absent.

Onset problem

Convection takes place when buoyancy forces are sufficient to overcome viscous resistance.
For a porous medium, this happens when the Rayleigh number is sufficiently large. The critical
value of the Rayleigh number at which convection begins is a function primarily of the boundary

conditions. The critical Rayleigh number was originally calculated for a horizontal la er with iso-

thermal, impermeable boundaries by Lapwood (1948). Nield (1968) has applied the analwls of
Lapwood to other boundary conditions, including permeable or constant heat flux boundaries. -. -

Some of his results, pertinent to the present problem, are listed in Table I, along with the results
of the original problem considered by Lapwood.

Table 1. Summary for the onset of convection. After
Nield (1968).

Case Top boundary Bottom boundary Racr acr

I Constant temperature, Constant temperature, 39.5 3.14 .2,
impermeable impermeable

2 Constant temperature, Constant temperature. 27.1 2.33 S
permeable impermeable

3 Constant temperature, Constant flux, 27.1 2.33
impermeable impermeable

4 Constant temperature, Constant flux. 17.7 1.75
permeable impermeable

_ -



uses eq 33 for the energy equation, and thus accounts for latent heat, while the other uses eq 31, -

and does not account for latent heat effects. The codes are designated as CONVAP and CONVEC
respectively. The programs differ only in the energy equation used, and thus Figure 9 applies to

both codes.
The initial temperature profile varied linearly in z and was constant in the x direction. The .-

stream function was set equal to zero over the entire grid, corresponding to a no-flow situation.
A temperature perturbation was introduced prior to the first stream function calculation to start

the flows. The location and magnitude of this perturbation affects the transient response but not

the final stead), state.

I ypically, most of the computing time was used to obtain the iterative solution of the equa-
tion of motion. This equation was therefore overrelaxed (Pinder and Gray 1977) to speed con-.-I

vergence. In essence, what the overrelaxation does is to weight the value of V. + 1 to make the

equation more or less implicit. It was found that an optimum value of the relaxation coefficient
was 1.7, where 2.0 is fully implicit and 0.0 is fully explicit. The convergence of the solution at

a time step was adequate when for all i and j

e - , o Id
'~ vi 1 -4

IC .1 + 1 1,, ,+ 0 .0 1 

-

where 4',,, and .,mn are the maximum and minimum values of the stream function calculated
during iteration. - -

Several criteria were used to determine if the solution was at a steady state. The most reliable
was to monitor energy conservation. At steady state, all heat flowing in must flow out. Since
the lateral boundaries are adiabatic, this implies that the heat flux at the bottom be equivalent to
the heat flux at the top. In nondimensional form, the heat flux is the Nusselt number. The con-

servation of energy was monitored by observing the ratio J(Nutop - Nu bot)/NUbotl. The equa-
tions used for calculating the Nusselt numbers at the boundaries are derived in Appendix A.

For each run, the energy balance ratio would reach a minimum value because of accuracy lim-
itations of the solution. Better conservation (a lower minimum balance) could be achieved by re-

fining the grid. Choice of the time step did not affect the final steady state or the energy conser-
vation achieved. Thus the final steady state was independent of the path followed to obtain it.

Choice of the proper time step was important in the speed with which the solution converged.
Too small a time step resulted in smooth but very slow convergence. Too large a time step would
produce an oscillating solution that would overshoot the steady state, thus also requiring a long

solution time. If the time step was much too large, the solution would not converge to a steady
state. From experience we found that the optimum time step size was usually between 0.01 and
0.05. Grid spacing size did not seem to affect the choice of At, but the value of the Rayleigh
number did. It was found to be necessary to use a smaler time step as the Rayleigh number in-

creased.

Verification of the model

To test the model, runs were made that could be compared directly to results in the literature.

Most of the results in the literature are for the basic case of convection in a horizontal layer bound-
ed by isothermal, impermeable surfaces. Figure 3 shows some of the results for this case. Experi- 0
mental results (compiled by Combarnous and Bories) are shown, along with analytical results of
Palm et al. (1972) and Combarnous and Bories (1975). The simple relation deduced by Elder

(1967),

Nu = Ra/Rac, (43)

19
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aCCUmlulation (T"~ T~, h h

conduction h At+ +i -At.1

and

hx

convection - (uT)1 + ht + 2(wT)i91, =(wT)i+,-

Rearranging and combining, we find the final form to be

- -Q 1 -TQ) A  2T+ I,+ Tl,,,,..!,
(tT2 -( T 1 t) + I-

(42)

2 (u7)I, +1[/WT),1, -(wlT),1

While the correct form of the conduction terms could be found from a shadow node technique
similar to the one employed earlier, the correct form of the convection term is much morc diffi-
cult to derive.

Numerical solution
An Alternating Direction Implicit (ADI) scheme is used to evaluate the algebraic equations

(Pinder and Gray 1977). The method sweeps the
grid line by line, first in the x direction, then in the

z direction. The scheme is implicit in that the equa- e co-sa-t

tions written about each node are solved simultane-
ously for each successive line. Thus each algebraic

equation contains more than one unknown. When Initialize arrays

solving the equations for a line swept in the x direc-
tion, the derivatives in x are evaluated at the time cacuaterm

step level Q+ I and derivatives in z are evaluated at source term

the time step level Q. The alternatives to a line- I a

implicit scheme are to solve the equations explicitly, of stream function

where new values are calculated on a node by node

basis, or to solve the equations directly, in which No Adequate convergence?

case the values for the entire grid are calculated si- L"-=
Yes."-'

multaneously. The ADI method is more stable than ADI calculations

the explicit method, thus allowing much larger time of temperature field

steps to be used. The advantage over direct methods Output if so desired

is that the matrix of coefficients is not zero only on
three main diagonals, and thus the system of equa- _ No Steady state'

tions may he solved simply and efficiently without-____
evaluating all of the zeros. An explicit form of this E nO

program was originally developed, and was found to
he much slower and more costly.

The computing flow chart is given in Figure 9. Figure 9. Fhw diagram for computer
Two FORTRAN programs were developed: One codes CON VAP and CON VFC.
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ary. Beier et al. (1983) account for variations along the boundary and find that the second order
terms are of 0(h3) and 0(h4 ) for the convective and conductive terms respectively. Thus each is
less than the first order truncation error term by 0(h2 ) and can be neglected for reasonably fine
grids.

The complete energy equation is then

Ti j (TiI - 2Ti + T_I)i (Ti+ - 2T + T_.)i

At h2 h2

(40)

h." i \ h z

The terms on the right-hand side may be evaluated at either the 2 or 2+1 time step level, depend-
ing on the solution scheme used. This same form can be obtained by applying central differences
to the conduction terms, first order upwind differences to the convection term, and a first order
forward difference to the transient term.

When the effects of phase change are considered (eq 32), the finite differences used follow the
same basic concepts. Convection of vapor is treated in a similar way to the convection of air.
Diffusion of vapor is treated in a manner similar to that of conduction of heat. The discrete form
of eq 31 (again with a false transient) is

NT2 - M+ I(T1 - Ti) -2 1 V (Ti - T .)

At h2

N2i+ 2(Ti+ I - T) - i_.A(i - i_
+

(41)
Ug+ 11(T +Nl)i+ % - iv(+Nlj
uf+ (T + NIJt % - ui-% (T + NI )f.-%;":"

(T + N1 )+ %, etc., are computed using upwind differencing as
with T+ % in eq 39. N2i+ %, etc., are defined in a manner simi- -4- -

lar to the velocities defined in eq 38, i.e., the average of the two I 2,j

nodes adjacent to the nodal boundary is taken. Velocities at IJ I hz
the node boundaries are computed as in eq 38.

Applying the finite difference formulae derived from Taylor +

series is much more difficult at the boundaries, and thus the
control volume approach proves superior there. Next we shall lI

illustrate the approach for an adiabatic, impermeable side wall.
Complete derivations for all of the cases of interest are given in
Appendix A. h,

The control volume is defined in Figure 8, 2

The boundary condition is that no h. s through the
wall. Thus the compc 'nts of the ener tion are Figure 8. Control volume.
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The control volume used for interior nodes is illustrated in Figure 7. Earlier we derived an
energy equation for single.component fluid flowing through a porous medium. The physical
statement of eq 30 is that

net (conduction + convection) = accumulation.

It was assumed that the system was at steady state, so that accumulation was zero. Here we in-
troduce a transient term so that we may numerically advance the system to its final steady state.
For the control volume about the node 41 the accumulation over one time step At is written as

acc = (T ' - T . )hxh.

where the index Q indicates the time step level, and T, x and z are the nondimensional variables
defined earlier.

The flow of heat into the control volume by conduction in the time At is given by

+Tj, ;1 ) •11+~;+h +T 1cod= T '- Id - TO./ Ti+ li- T o' hAt+ tt I " u+ i'I
con h _, h+ h h , hz  •. .

Physically, the conduction terms are positive when the temperature is greater outside the control
volume than inside, i.e., heat flows in. The heat flow across each boundary is simply the gradient
across that boundary, which here is approximated with a central difference applied at the con-
trol volume boundary, multiplied by the area for heat transfer and the time interval.

For the convective terms, heat flows in when the fluid flows in. The heat flow attributable to
convection is

convect = ((u), ,, - (uT'), , JhAt - I(wT)_,, - (wT),+jhAt.

where u and w are positive in the positire x and z directions respectively. We define

- , I K 14+ , W ,

(38)

I14 U, + K '
U 1.

r SI* I " ,

The upwind differencing Ioncept then defines 2

T1_ = .- 1 for u,-,, .0 T Ti.1_ forwj_v >0

[T, for u,-,, < 0 T,1. for wI_.A < 0

(39)
T1. I., for u,. < 0 T, for w, , > 0

T,+ - Ti + 1/ ='2"2i7

[To. for us,+,. > 0 [T ,i+ I for wi+, < 0

In calculating the heat fluxes across each boundary, we have assumed that the temperature
and temperature gradient normal to the control volume boundary are constant along the bound-
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because the value for P is known. However, when the top is permeable, the boundary condition

is 3/az 0, and we must solve for 0b at the upper boundary. We cannot simply apply eq 34 be-
cause the node at index i+1 does not exist forj = nz. The procedure used is to employ a shadow . -

node technique, in effect pretending that the node is there. We write a central difference form . ,

of the boundary condition as

2h,

and a backward difference form of the temperature derivative as

3T~n+l i.z- 
"",,z 

Tn
2h, = 0(35b)

(-\ -3Tinz -4in- +T'z 2  (35b) "

=nz 2 h z n z 2h z

Then, by writing the PDE at j=nz, we can eliminate z by solving for it from eq 35a. The re-
sult is an equation for Onz:

(O,+i- 2ki, + Oi-d)z k z-i -If"lz
h2 +2 2

(36)(- r ,l..- - Ti-I, ,, (3Ti, nz 4Tinz-, +Tinz-2.]'

Ra cos(o '2 h .- sin( 2hz  .+

Velocities are calculated, again using three-point central differences. For interior nodes

OiQj+ I - 410-"

i - 2hz

(37)
i+ Ij ,- i-lij

w. 2hx

At the boundaries, the velocity component normal to the wall is zero, but the component parallel
to the wall is not. The appropriate three-point backward or forward difference is then employed,
similar to eq 35b.

To derive the discrete form of the energy equation, integration is performed over a control vol-

ume about each node. The discrete form may also be found
from Taylor series formulas, but this method is physically
less appealing and difficult to apply at the boundaries. Up- I I

wind differencing is applied to evaluate the convection terms. - _ - _4--

Essentially, this means that only nodes upstream of the con- ,.I,
trol volume boundary are allowed to influence the heat trans- I

fer across the boundary. Upwind differencing is used to - - - -

damp the instability associated with the non-linear, first or- i •

der convective terms. The method enhances the stability of

the numerical method, but at a cost in accuracy, because the "'

upwind difference expressions have a truncation error of Figure 7. Control volume used
O(h). This concept will be illustrated shortly. for interior nodes.
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From continuity for the vapor phase,; ,= V-(pj) + 7"v at steady state, and by definition,
L = hv - h,. The gradients of p, as a function of temperature are obtained by differentiating the

equation of state. Using these relations, and Fick's law for j, we find the final dimensional form
of the energy equation

(Pp)a7 T + L V p~v= k.V 2 T + LBDV (pvV T) (30)

Finally, we put eq 26 and eq 30 in nondimensional form. T, V and v are the dimensional quan-
tities that are now used in nondimensional form, which is done identically to that in the Equation
of Motion section. Then

' T=V2 T (31)

and

7 "(T + Nl) =V '(N2VT) (32)

where

Lp, LDBp"
Nl (pC )aAT and N2=1+ k (33)

It is important to note that both NI and N2 are functions of temperature.

Finite difference methods
Finite differences were chosen as a means of obtaining approximate solutions to the partial

differential equations (PDE). The method breaks the region of interest down into discrete points,
replacing the PDE with a system of algebraic equations in terms of values of the dependent vari-
ables at the discrete points. As the number of points increases, both the accuracy of the solution
and the computing time increase. Finite differences are especially well suited to the present prob-
lem because of the simple geometries involved. A typical grid for the current problem is illustrat-'"
ed in Figure 6.

Formulas for discretizing the PDEs can be derived either from Taylor series expansions (Pinder
and Gray 1977) or by integrating over control volumes around nodes. This latter method is espe-
cially useful for conservation equations such as the energy equation in the current problem. We
later demonstrate this approach, which is used extensively in deriving formulae for the energy
equation.

First, we will present the results for the equation of motion. Finite difference expressions,
which have a truncation error of 0(h2 ), are used for all terms; h is the spacing between grid points.
The discrete form of eq 14 is

ji+ 1,j - 20iki + j-I ,,j W,,+ I - 20i, + 0j, j
h 2+ 2 .o f 6 6 .7 - j n z

(34) - ---e S

T~~ T
Ra lcos ( T + 1 4 - Ti- , _ _ sin .Ti+ 2 - .- , I

inx
This form is valid at all interior nodes.

When the boundary condition is the Dirichlet condition Fure 6. Typicalfinite dif-
(4 = 0), we do not need to apply the PDE at the boundary ference grid.
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We can evaluate the enthalpy by the following thermodynamic relations:

dh =  dT+ dP , T" C and (a (

where j3 is the isobaric coefficient of thermal expansion. For air lIT, and thus

dh= CPdT. (24)

Applying Fourier's law of heat conduction:

= kiT (25)

and the energy equation is, in final form,

(pCp)aV T = km V 2 T. (26)

This is the standard form of the energy equation used in modeling of porous media.
We now introduce vapor effects so p, varies with temperature and ri is not zero. Applying

these to eq 22, along with r, = -r,, results in

o&v;v ,-hv+ Pa Va*'(ha + r (hv - h,) km V2 T. (27)

At steady state ;V = A(pg)v. Component velocities are given by

-. ~= j I.P

v=V-+....

Jala

The j's are the component velocities relative to the mass average velocity. Here they are consid-
ered to be caused by concentration diffusion only. Sinceja = -jv, and from Fick's law of diffu-
sion,j = - DVP,, we can estimate the relative contributions of diffusion to the component veloc-
ities. For an equation of state for the vapor, we use the exponential relation

p p,, exp [B(T' -T,) (28)

Here we have assumed that the vapor is everywhere saturated. Although this is not strictly true,
typical supersaturations are usually less than 0.1% and thus have little effect on the overall diffu-
sion process.

At 0C, with a 0.30 C/cm temperature gradient, the diffusional flux is about 2.7x 10- ' g/cm2 s. . . -

The diffusional velocities are then 5x 10-3 and 2x 10 " cm/s for vapor and air respectively. Since
convective velocities are of the order of 0.01 cm/s, it is certainly safe to neglect at least the diffu-
sional component of air. Also, the density of vapor is three orders of magnitude less than that of
air, and since the heat capacities are similar, the second term of eq 27 is much greater than the
first. The energy equation is now of the form

,paC,),VvT+ r,(h, - h.)= kmV 2 T (29)
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term. The gravitation term is estimated to be four orders of magnitude less than the comparable
convection term, and thus is also neglected.

Since

," "..__:.ui =hi - (P/I

we can write eq 16 as

.-. - p)i + i [ (ph ) - i ' p (17)

where the summation is taken over all components, which may have different velocities because
they diffuse at different rates. Since

api ap
p'.- i = pii ,V (p i),= V " pv and Z -

" i at at

the two pressure work terms are identical and cancel each other out. Rearranging, we get

at_ fh (18)
I::: h, + P, a t

The continuity equation for each component is

P (pi;)i+ri (19)
at

where r, is the rate of production of component i. The equation of continuity for an incompres-
sible fluid is

~. ~-- 0. (20)

Combining eq 18 and 19 results in

Sah ap
.- Piyt+ Pi 'vhi+rih =- . - at, (21)

Here we deal only in the steady-state results, assuming that the phenomena in snow are at least
quasi-steady, that is, changing slowly.

I (i 'vhhi + rih =- " (22)

This is the general form of the energy equation we will apply.
* First let us consider only air flowing through snow, with no vapor contribution (or vapor con-

tributions independent of temperature). Then ri = 0 and v = Va" The resulting energy equation
is then

VPi"'ha - , q. (23)
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* If we take the curl (Vx) of both sides, the pressure term is identically zero and the result is

aw au KH"
T--5-=-(Vx pfg), ". .,K

where w and u are the dimensionless velocity components in the z and x directions respectively.
To a good approximation, the density of air is a linear function of temperature over the tern-

perature range of interest, thus we can write an equation of state of the form

S.
"  P P[1 - (W -To)]. (10)

By introducing a dimensionless temperature defined as

T' - Tj

T

and substituting this into the density term, the equation of motion becomes

aw au p0KHPAT( T (12)
, ' ~ax az ,.K.'L

- Finally, a stream function of the form

• _-U (13)

ax az

is introduced. The final form of the equation of motion is then

r aT aT
V 2 ¢=Ra [cos T -sine -I (14)X Z.

where

pogfOATKH :"
Ra = (15)

AIK

As discussed earlier, the parameter ATis defined by the boundary conditions.

Energy equation
For a multicomponent system, the energy equation can be written as

at .-rg.. X (p) * V" piU)=-7'q-V "pl+pp(. -V.(r.v) (16) '''

where the summation is over all components. Here primes are not used, although the variables
are later made nondimensional. This is essentially a multicomponent form of an equation pre.
sented by Bird et al. (1960). All of the work terms have been written for a single.component

fluid, because for the snow-air system the fluid is dominantly air. Kinetic energy terms have been
neglected. The last term on the right side represents viscous work ascribable to energy dissipation
in the fluid but, since dissipation is dominated by fluid shear at the solid matrix, we neglect this

i-." -- 11 .'
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AM accounting for latent heat effects from vapor transport. Both models assume that the medium
is isotropic and homogeneous. Boundary conditions, aspect ratio of the medium, Rayleigh num-
ber and slope may all be varied for both models. In addition, for the second model the effective
vapor diffusivity (Deft) and thermal conductivity (kin) may also be varied.

In this section, the governing equations are developed and the numerical methods are outlined;
in the next section the results are presented.

Equation of motion
It is assumed here that air flow through snow can be described by the empirical relation devel-

oped by Darcy. This is valid for Reynolds numbers (Re) less than a critical number for the onset
of turbulent flow, which falls between 1.0 and 10.0 (Dullien 1979). The Reynolds number is de-
fined as

e" Re =- . " Jll

where d is a particle diameter. Our calculations (see Applications to Snow Metamorphism section)
.'. 2reveal that a typical velocity is 0.04 cm/s. Thus for a I -mm particle, the Reynolds number is

about 0.03, and Darcy's Law should be valid.
Darcy's Law is traditionally (Scheidegger 1974) written as

* V'p- 'K- p- g-0 (8)

where g is the gravitational vector and is in the same direction as the positive z axis. The velocity
is averaged over a cross-sectional area that is an order larger than the pore size scale, thus the ye-

Slocity is equivalent to a volumetric flux. When the fluid is,, iade up of several components, a
mass average velocity is used, defined as

ii

where the summation is over all fluid components and each v, is the volumetric flux of the compo-
nent. The primes indicate quantities later made dimensionless.

We limit ourselves to two-dimensional modeling and define the coordinate system in two di-
mensions as shown in Figure 5. The gravity vector has negative z and x components and thus
the final term of eq 8 has the opposite sign. Introducing

K
Hz

and

* '•

H

we rewrite eq 8 as
Figure S. Two-di-

'-KV (9) mensional coordi-
-*- PK -fp g nate system.
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Studies of convection through snow
To date, only Akitaya (1974) and Palm and Tveitereid (1979) have studied thermal convection

in snow. Akitaya's work was primarily experimental, while that of Palm and Tveitereid was en-
tirely theoretical.

Akitaya attempted to generate convection in a layer of snow 15 cm deep, but was largely un-
successful. He was able to generate convection only in artificial snow with an average grain size
of 15 mm. That he was able to generate convection in only snow of extreme permeability is not
surprising, since convection is less likely in shallow snow layers. His results with artificial snow
are surprising because they show a step change in the effective thermal conductivity with increas-
ing temperature gradient, rather than the continuous increase we would expect.

Akitaya's comparison of experiment with theory led him to conclude that in snow, convection
occurs at a much higher than predicted critical gradient. His conclusion is not valid, however, be- .
cause he used PC, for snow rather than for air when he calculated the conditions for the onset of
convection. When correctly calculated, it is obvious why there was no convection in his natural
snow experiments.,,-

Palm and Tveitereid (1979) calculated the critical conditions for convection in snow in a simi-
lar manner to that used for other porous media. In general, their conclusion was that convection
could occur only in old, coarse-grained snow subjected to severe gradients. While it is true that
these are conditions under which convection is most likely, they probably underestimate the like-
lihood of convection under less severe situations. In particular, they used a value of air permea-
bility for "coarse-grained" snow that is similar to that observed by Shimizu (1970) for "fine-
grained" snow. Shimizu reported values about twice as large for what he calls coarse-grained snow,
and Bader (1939) observed permeabilities for depth hoar as much as five times the largest consid-
ered by Palm and Tveitereid.

The theory developed in the sections above is not sufficient to fully describe convection in
snow. Phase change from the net condensation or sublimation of water vapor is an important
part of the heat transfer process. This was recognized by Palm and Tveitereid, but was incorporat-
ed into their analysis only insofar as the value of K was affected in the Rayleigh number. Since
their value of k,, was arbitrarily chosen, their consideration of phase change was physically mean-
ingless. It is necessary to treat phase change as a part of the governing equations, since its influ-
ence depends on local temperatures, temperature gradients and velocities.

The boundary conditions in snow frequently include a permeable top and a constant heat flux
bottom. While the influence of these boundary conditions on the onset of convection is well un-
derstood (see Table 1), their influence on the intensity of convection at Rayleigh numbers greater
than critical has not been quantified. This is one of the aims of later sections of this report.

Those recently working on convection in snow have ignored the convection phenomenon asso-
ciated with sloped layers. Neher (1939) recognized that flow of air occurs up a snow slope when
a temperature gradient is applied, but none of his successors have made mention of this fact. He
attributes the existence of thicker depth hoar layers in the upslope parts of inclined snow covers
to this phenomenon. This observation would seem of vital importance in avalanche predictions
because these upslope regions are frequently starting zones for avalanches.

In the following section, we address the above-stated gaps in our current knowledge. Later our
findings are applied to two real problems of convection in a snow layer: First, does it occur? And
second, is it important in snow metamorphism?

MODELING

A numerical model is developed here to simulate convection in a porous medium. Two forms

of the model are developed, one form without phase change, which is similar to the porous media
model of Ribando (1977). The second form more closely models convection through snow by
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covcto i layer"(fter Cmbar-

Figure 4. Unicellular convection in a sloped porous layer (after Combar-
nous and Bories 1975).

fer is affected. This convection is illustrated in Figure 4; the velocity profile can be described by
(Bories and Combarnous 1973)

u(z) pO(gLATK sinot~- ~) (7)

Thus the intensity of convection increases with increasing slope.
As the Rayleigh number increases to the critical value, the structure of convection becomes

more complex. For slightly inclined slopes (0 < 10-15°), hexagonal cells have been observed by
Bories and Combarnous (1973). Kaneko et al. (1972) have observed transverse rolls (axis parallel
to the contour) at similar low angles. The reason they observed rolls and not hexagonal cells was
that the dimensions of their box were much smaller along the roll axis, and thus two dimensional
convection was forced.

In more steeply inclined layers at high Rayleigh numbers, Bories and Combarnous found long-
itudinal rolls (axis parallel to fall line). Kaneko et al. observed a single unicellular pattern in steep

layers. The two sets of observations are consistent when respective container geometries are con-
" - sidered. Krantz et al. (1983) observed a similar transition in field studies of patterned ground.

-* The transition they observed takes place between 30 and 70 .

The behavior of these cells (or rolls) is similar to that in horizontal systems, except that the
governing parameter, Ra, is replaced by Ra coso. The experimental data of Bories and Combar-

nous (1973) show that if the Nusselt number is plotted as a function of Ra coso, the result is iden-
. - tical to Figure 3, especially at high Rayleigh numbers. Weber (1975) extends the analytical re-

sults of Palm et al. (1972) by simply replacingg by g cost in the definition of Rayleigh number.
* The analytical results agree well with the experimental data of i,,ries and Combarnous.

No work has been done on the influence of different boundary conditions or the effects of
lateral confinement on convection in sloped layers. Also, the existence of the longitudinal rolls
described by Bories and Combarnous (1973), superimposed on the basic uphill-downhill unicell-
ular flow, must be better understood. No return path for the fluid is described and thus the spi-
ral coil may not exist.

8
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Table 2. Summary of the results of Ribando (1977), indicating the
influence of constant flux bottom and permeable top boundary
conditions.

Boundary conditions
Top Bottom AR Ra Nu 'max

Constant temperature, Constant temperature, 0.6 20C 4.07 6.87
impermeable impermeable

Constant temperature, Constant temperature, 0.6 2 6.38 9.06
permeable impermeable

Constant temperature, Constant flux, 0.6 200 2.6 3.1
impermeable impermeable

Constant temyperature, Constant flux, 0.6 200 3.1 3.21
permeable impermeable

Constant temverature, Constant flux, 0.6 3000 NA* 7.98
impermeable impermeable

Constant temperature, Constant flux, 0.6 3000 NA 13.85
permeable impermeable

Constant temperature, Constant flux, 1.0 40 1.4 1.44
permeable impermeable

Constant temperature, Constant flux, 1.0 100 1.9 2.86
impermeable impermeable

*Not available

ability of the medium to transfer heat has been doubled. When the boundary conditions are
fixed temperatures, the result is a doubling of the average heat flux. When one of the boundaries

0 is a fixed flux boundary, then the average temperature difference necessary to maintain a given
heat flux is halved. Figure 3 shows some of the results to date, both experimental and theoreti-
cal, for heat transfer between isothermal, impermeable boundaries.

Experimental results for other boundary conditions were not obtained. Ribando (1977) in-
vestigated numerically the effects of a permeable top and of a constant flux bottom upon heat

nsfer in porous media (Table 2). In general, his results indicate that for a given Rayleigh num-
ber a permeable top increases the intensity of convection, while a constant flux bottom decreases
it, compared to isothermal, impermeable boundaries. It is apparent that the correct choice of.-
boundary conditions is very important, yet doing so is often difficult, especially since constant -

flux and isothermal boundaries are identical at subcritical Rayleigh numbers.

Layering and slope effects
The effects of layering and slope are of great importance to this study, since snow covers are

frequently heterogeneous and are often found on hillsides. Most of the analysis of the effects of I
layering has been done using numerical solutions of the governing differential equations. Both
the onset of convection (McKibben and O'Sullivan 1980, Richard and Gounot 1981) and heat
transfer in layered porous media (Rana et al. 1979, McKibben and O'Sullivan 1981, Richard and
Gounot 1981) have been treated. Some of the results have been compared favorably with exper-
iments (Richard and Gounot 1981) and with data from geothermal reservoirs (Rana et al. 1979). I

Because of the infinite number of possibilities for combinations of layers, generalized correla-
tions are not available to predict the effects of layers on the onset of convection and heat trans-
fer by convection. McKibben and O'Sullivan (1980) conclude that unless permeability differences
between layers are 50% or more, the onset of convection is not affected. Also, when an upper
layer of low permeability exists, a closed or open upper boundary does not affect the results.

The outstanding feature that distinguishes the situation in a sloped layer from that in a hori- .-..

zontal layer is that on a slope there will be some motion of air for any finite AT. At subcritical
Rayleigh numbers, the flow is a simple unicellular pattern, rising along the lower warm boundary
and returning downward below the cold upper boundary. In a slope of infinite extent, flow per-

-." pendicular to the slope is negligible, and thus neither the temperature profile nor the heat trans-
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The critical Rayleigh number is minimized for a given set of boundary conditions at some op-
timum cell size. The critical wave number ac, is also given in Table 1. This wave number is de-
fined as

2. 2 2 +m
2acr,

where R and m are the wave numbers in the x and y directions, defined respectively as 2 21rHlWx

and m = 2rrH/Wy: Wx and W'y are the cell dimensions in the x andy directions re:pectively.
Knowing acr, we can predict the cell size at the onset of convection for either two-dimensional e,
rolls or three-dimensional hexagons.

The above results apply when the lateral extent of the layer is large. When confimement is im-
portant, the dimensions of the container dictate the cell form and the critical Rayleigh number.
Beck (1972) and Tewari and Torrence (1981) solved for the cell form and critical Rayleigh num-
ber as a function of container size for the closed and open top cases respectively. They found
that unless both the container dimensions are much less than the critical wavelengths, the critical
Rayleigh number is not increased significantly. We aiso conclude that when one of the lateral
dimensions is less than the critical wavelength, the preferred cell form at the onset is two-dimen-
sional rolls.

Heat transfer attributable to thermal convection
When the Rayleigh number increases beyond the critical value, convection occurs, causing a

" -significant increase in the rate of heat transfer. Numerical, analytical and experimental methods
" "have all been used to investigate this phenomenon. Published results are commonly presented in

terms of the Nusselt number, defined as

Nu keff  (6)
km

where kef f is an effective thermal conductivity that accounts for both conductive and convective
heat transfer. If Nu 1.0, convection has no effect on heat transfer, whereas if Nu = 2.0, the
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UFigure 3. Experimental and theoretical results for heat transfer bet een
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which is valid for Ra/Racr 1, is shown
for comparison. We conclude that the re- 3 Numerical Rsl

lation of Elder describes the experimental -Elder

results reasonably well. Figure 10 shows
numerical results from our model for the
same boundary conditions as Figure 9, 2 

1

and makes a favorable comparison with Nu
eq 43. The runs leading to these results
were done with AR = 1, which is equiva-

lent to the cell size at the onset of con-
vection. Runs are made only for Ray-
leigh numbers just above the critical val- _ _ _

ue, where the cell size is not too differ- 0 I 2 3

ent from that at the onset. By compar- Rc/R 0

ing the results of Elder to the experi-
mental data, we conclude that our nu. Figure 10. Numerical results and the relation de-
merical model, which agrees with eq 43, duced by Elder (1967) for convection between iso-
is actually a better tool for predicting thermal, impermeable boundaries,
heat transfer rates than either of the
analytical results.

When the bottom boundary is a constant flux thermal condition, we have only the numerical
results of Ribando (1977) for comparison. Table 3 shows numerical results from our model with "
those of Ribando for identical conditions. Nusselt numbers for Ribando are estimated from his
plots of isotherms, using the temperature difference at the midpoint of the top and bottom bound-
aries. Nusselt numbers for the present model are calculated by integration along the boundaries
to calculate an average AT. Agreement for all cases is very good.

Finally, we test the model by trying to predict the onset of convection. This is done for the - -

closed top isothermal and open top isothermal cases. Aspect ratios used are those of a single cell . .

size at the onset of convection, calculated from the critical wavelength values given in Table 1.
While it is not really practical to identify an exact onset point, it is possible to find a narrow range - -

in which the onset point lies. The upper and lower limits indicate Rayleigh numbers at which
convection clearly was and was not occurring respectively. We find that 38.0 < Racr < 41.0 and
26.0 < Rae, < 28.0 for the closed and open top cases respectively. The corresponding analytical
results of Ra = 39.5 and Ra = 27.1 fit within the observed range for each case.

The effects of phase change have yet to be dealt with in the literature, and thus no means of
testing the model for significant phase change exist. Experimental and theoretical results exist
for convection in a sloped layer, and the model predicts the general trends indicated by the pub- r.

Table 3. Comparison of published values with this study.
All values are based on numerical calculations. Nusselt
numbers for the results of Ribando are estimated from
plots of isotherms. (After Ribando [1977 ] and Klever
[19831.)

Boundary conditions AR Ra Nu 'Pmax Source

Open top, constant 1.0 40 ftl.4 1.44 Ribando
flux bottom 1.0 40 1.411 1.44 Present work

Closed top, constant 1.0 100 -1.9 2.86 Ribando
flux bottom 1.0 100 1.951 2.82 Present work

Closed top. 0.6 200 4.07 6.87 Ribando
isothermal bottom 0.6 200 NA 6.74 Klever

0.6 200 4.02 6.69 Present work

20



lished works. However, the manner I -zt

of presentation of results in the lit- --

erature obscures some of the physi- "

cal phenomena that occur in sloped
layers. We have shown here that the I

model is a reliable tool for analyz-I
ing convection in horizontal porous
media and it should allow us to study
cases for which little data are current- z=o
ly available. x=O XI.

a. Closed top, isothermal bottom

MODELING RESULTS z=-

The effects of boundary condi-
tions on heat transfer and air veloc-
ity are studied using the model.
Subsequently, the effects on heat
transfer attributable to latent heat
release by phase change are analyzed
and found to be a function of the _Z=O

diffusivity. Finally, we use the mod- x=o Xzl 35

el to investigate several issues of im- b. Open top, isothermal bottom.
portance in sloped layers, including
the effects of lateral confinement. z.

Effects of constant flux and
permeable boundaries on
convection in horizontal layers

The work of Ribando (1977) is
an important starting point in the
discussion of the effects of boundary
conditions upon convection in hori-
zontal layers. He developed the )z=o

mathematical forms of the boundary x o

conditions of interest, and applied c. Closed top, flux bottom.
them to several simple cases. The
aim here is to more thoroughly in- I z-

vestigate the effects of these boun- -,

dary conditions, so that the more - .
general conclusions about the effects .

on heat transfer can be made.
Figure 11 shows the steady-state

results of runs for Ra/Racr = 1.5 for
four combinations of boundary con- ---

ditions. The aspect ratio in each case z= o 0
corresponds to the size of a single ×=o x=..8

cell at the onset of convection, for d. Open top, flux bottom.
the given boundary conditions. When Figure 11. Isotherms (solid lines) and streamlines

* the Rayleigh number is greater than (dashed lines) for Ra/Racr = .S for boundary
the critical value, the size of a convec- conditions as labeled.
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Figure 12. Heat transfer re-
sults of the numerical mod-

I I I I 4 eling in this report, and someo 2 3R results of Elder (1967) and
R/Rac, Ribando (1977).
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Figure 13. Maximum value of the

I stream function versus Ra/Racr
0 10 15 20 2.5 from the numerical results of this

_/R-cr report.

tion cell is smaller than that at the onset, which explains the asymmetrical behavior observed in
Figure 11.

Figure 12 shows the Nusselt number versus Ra/Racr for each of the same combinations of
boundary conditions. A key conclusion from the present results is that simple relations for heat
transfer as a function of Ra/Racr depend only on the bottom thermal boundary condition. For
an isothermal bottom, Elder's equation (eq 43) works well.

When the bottom is a constant flux thermal boundary condition, we propose

1Nu + 0.365 - (44)acr

as a simple model of heat transfer. Ribando's results for the constant flux case are also presented
' • in Figure 12, for comparison. His results agree well with eq 44, although he used an aspect ratio •

of 1.0 for each run. The actual aspect ratio above the onset of convection is not known with cer-
tainty, but we do know that it is smaller than that on the onset of convection. Thus,,at least,
the geometry used by Ribando moves us in the correct direction in approaching the optimal cell
size. Similar results are found with different geometries, so it appears that the aspect ratio is of
little importance, as long as the aspect ratio used is near that at which heat transfer is maximized.

UFigures 13 and 14 show nmax and w, respectively, again as functions of Ra/Rac,. We
note that again the relations are dominated by the lower thermal boundary condition. The up-
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Figure 14. Maximum vertical velocity versus Ra/Racr from
the numerical results of this report.

per permeability boundary condition is more important in determining the maximum velocity, prob-
ably because the aspect ratios change with the upper boundary condition. If O'max is similar, ap lax
will decrease as the aspect ratio increases. Thus it is expected that, for a given Ra/Rac,, the max-
imum velocity would be less for an open top layer. The values of velocity are important in our
discussions of the effects of convection on snow metamorphism.

Effects of phase change on convection
Comparing eq 26 and 29, we find that the effect of vapor transport per se arises from the net

rate of phase change between solid and fluid. Henceforth, we refer to vapor transport effects as
phase change effects, since only with phase change is there an effect on the energy equation. As
shown in eq 29, phase change comes about as a result of the divergence of the vapor flux, There
are two contributions to the vapor flux, diffusive and convective. Earlier we discussed the effects

of diffusive vapor transport through snow, and found some uncertainty in the value ofDeff pri-
marily because of uncertainty over the role of interparticle vapor flow. Thus, we will vary Deff
to examine what effects its magnitude might have.

Earlier we defined the Rayleigh number (eq 5) as

Ra , o13g A THK
Ra

where K was defined as kml(PCp)t. In our derivation of the equation of motion, K was introduced
as a scaling factor, and could conceivably have several definitions. However, the energy equation
is greatly simplified when K is defined as above. For a single-component fluid flowing through a
porous medium, the medium's thermal conductivity is assumed to be constant throughout. For
snow, we have an effective thermal conductivity that strongly depends on temperature, and thus is
not suitable for use as a scaling factor. Thus we will use kn, which is the thermal conductivity as-
cribable to conduction through the ice and air, and which is essentially independent of temper-
ature. Note that km = keff - k. When the temperature of the top surface is low (T < -200C),
the vapor density is very low and thus transport of heat by the vapor is negligible, and K used in
the Rayleigh number is truly descriptive of the heat transfer process. However, near the bottom,
where the temperature is higher, and vapor density higher, K and thus the Rayleigh number do
not fully describe the heat transfer process.
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Figure 15. Ratio of heat transfer with phase change to heat transfer
without phase change for two values of the Rayleigh number versus
Lewis number, from numerical modeling of this report.
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* Figure 16. Isotherms for convection with and with-
out phase changc (Ra = 50; isothermal, impermeable
boundaries; AR = 1.0). ,

We can at least qualitatively analyze the effects of phase change, for a given Rayleigh number,
by weighing the relative contributions of the convective and diffusive phase change terms. If con-
vective phase change dominates, then we expect convection to be more intense than analysis with
a single-component fluid would lead us to believe, and vice versa. We rewrite eq 31 as

l+ - V.TV J. (45)
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Figure 16 (contd).

* If the dimensionless parameter in the convection term is greater than the parameter in the conduc-
tion term, we expect convection to be intensified. This is true if Df,,./e is less than 1.0. If
is the Lewis number. If the Lewis number is less than 1.0, convection is damped, and if it is great-
er than 1.0, it is intensified. Figure 15 shows numerical results for various values of the Lewis
number. The ordinate is the ratio of heat transfer with phase change to heat transfer without
phase change. The model results closely follow the expected result that near Le 1.0, phase
change has little effect on heat transfer. However, for even small deviations from Le = 1.0, phase
change has significant effects on heat transfer. The range of Lewis numbers that the numerical
results cover gives approximate upper and lower limits for low density, dry snow.

SeiFigure 16 shows the effects of Lewis number on the temperature distribution at steady state.
The relative amounts of distortion from a linear temperature profile are more important than the
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exact positions of the isotherms. When the Lewis number is less than 1.0, the isotherms are less
distorted than the case with no phase change, and when the Lewis number is greater than 1.0, the
isotherms are more distorted. For Le = 1.0, the isotherms are of similar shape. The offset be-
tween isotherms is a result of the diffusive term changing the temperature profile in the absence
of convection.

- - Convection in sloped layers
In the Layering and Slope Effects section, the topic of convection in sloped layers was intro-

duced and it was noted that some confusion existed in the literature over the effects of slope.
The aim here is first to clarify the role of lateral confinement on convection in a sloped layer,
and then to quantify the effects of an open top on convection in a sloped layer. All discussions
in this section ignore the effects of phase change and isolate the role of slope.

The modeling efforts here are directly comparable to the experiments of Kaneko et al. (1974).t -.- i. ._

Their experiments were done in a narrow slot of AR = 3.0, which allowed only two-dimensional
convection. Their basic conclusion was that the Nusselt number could be represented by the re-
lation

Nu ; 0.082(Ra cosO) ° ' 7 6  
(46)

for 10 < 0 < 30 degrees and Ra cos(o) > 40. Our numerical results indicate that this is an approx-
imate representation of heat transfer but it obscures some of the behavior of convection in an in-
clined porous medium. Figure 17 shows the results of Kaneko et al. (1974), and the present nu-
merical results as a function of Ra cos(o). For a given slope, the Nusselt number increases in a
fashion similar to that described by eq 46, but for a given Rayleigh number, heat transfer either
increases or decreases with increasing slope.

3
Present

NumeriCol Results
0 Ro=,00
0 80

i~60

5 0 - L im it in g
2 Enve lope

N j

Eq 46

0 40 80 120

Figure 17. Nusselt number as a function of Ra cosyp from this
report numerical results and the experimental results of Kan-
e'ko et al. (19 74). Tin' envelope represents the extentl (if exper-
imntnal scatter in the work (tlKanekot. Both our computations
and the experimc'ntvof Kaneko arc done for AR =3.(.
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Figure 18. Nusselt number from the present numerical results

versus angle of inclination. Computations done on a grid of

aspect ratio equal to 3.0, with isothermal, impermeable bound-
aries.

Figure 18 shows the Nusselt number versus slope for various values of the Rayleigh number.

The changing gradient of these curves can be explained in terms of the two competing forms of
convection that are at work. We describe them in terms of the analogous convection in a fluid
layer, the best known of which is the classic Benard convection in a horizontal layer with cold
top and hot bottom. Convection is multicellular above a critical value of the Rayleigh number
and increases in intensity as the Rayleigh number increases. The second form, or Rayleigh con-
vection, refers to flows driven by lateral temperature differences. Convection then occurs for
any value of the Rayleigh number and increases in intensity as the Rayleigh number increases. It
is Rayleigh convection that drives the simple unicellular flow described by eq 7. From eq 7 we

* can see that the intensity increases with •.

One of the assumptions leading to the derivation of eq 7 is that the temperature profle remains
linear, or analogously, that heat transfer normal to the flow is not affected. This is strictly true
only in the limit as the layer length becomes large. In a laterally confined layer, flow is curved by
end effects, and thus a mechanism for heat transfer between hot and cold exists. The intensity
of this heat transfer process must increase as the angle increases because the velocities increase.

Weber (1975) analytically treats the case of convection in an infinite layer, and finds that heat
- transfer is indeed a function of Ra coso. In this case, Benard convection is the only heat transfer

mechanism, and thus the driving force for Benard convection must decrease as the angle increases.

Referring back to Figure 18, we see that generally the Nusselt number first increases with in-
creasing slope, then decreases, and then increases again. This happens because the interaction be-

* tween Rayleigh and Benard convection results in a changing cell pattern. While the heat transfer --

because of Rayleigh convection increases continuously with increasing slope, the heat transfer be-
cause of Benard convection decreases substantially when the number of convective cells decreases.
For a Rayleigh number of 100.0, the number of cells decreases from three cells at a slope of 150
to one cell at a slope of 250. The heat transfer and the Nusselt number decrease accordingly. At
the intermediate value of 200 there are still three cells but the middle cell is very weak and does

not contribute much to the heat transfer. Accordingly, the Nusselt number is less at 200 than at
15° . but the big decrease occurs at 250 because only one cell is active. This leads to the conclu-
sion that while Bnard convection is a more powerful heat transfer mechanism, Rayleigh convec-
tion also contributes to heat transfer when the layer is confined. Rayleigh convection is especial-
ly important at Rayleigh numbers near Ra,, where Benard convection is weaker.

If there is no transition from multicellular to unicellular convection, no drop in heat transfer
is expected at slopes up to 450 Figure 19 shows the restits of runs done with an aspect ratio of
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Figure 19. Nusselt number from the present
numerical results versus angle of inclination.
Computations done on a grid of AR = 1.0,
with isothermal, impermeable boundaries.
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Figure 20. Nusselt number versus Rayleigh number -"

for two different aspect ratios of an angle of inclina-

tion of 900. Our numerical results are compared with

those of Chan et aL (19 70).

1.0, where unicellular convection is forced on the system. No transition in the range of 100-300
is observed, but a decrease in heat transfer at large (0 > 600) angles is observed. This is because
the driving force for convection can be thought of as the sum of the Benard and Rayleigh contri-
butions and is thus proportional to coso + sino. This quantity is a maximum at 450, and we can
see that at the larger Rayleigh numbers, this is about where the maximum occurs. At lower Ray-
leigh numbers, Benard convection is not so important in the heat transfer process, and thus the
maximum is shifted. As shown in Figure 20, our results agree well with those in the literature for

900. _
Secondary shifts occur in Figure 18 at 50 and 10° for Rayleigh numbers of 60.0 and 80.0 re-

spectively. These small dips take place when the layer is in the process of shifting cell forms. In
each case one smaller cell formed in the middle of two larger ones. Although the solution did
converge, this cell form would seem to be unstable, and is probably an inefficient convective pat-
tern for transferring heat.

We now turn to the important issue of convection in a sloped layer of snow, where lateral con-
finement is less likely to be important. If the snow layer is homogeneous, but has an impermeable
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crust on its surface, convection at subcritical Rayleigh numbers is described by eq 7. If imperme-
able layers are present internally in the snow, eq 7 describes the convection between the layers,
with the Rayleigh number based on the properties and boundary conditions of the internal layer.

Frequently, the top of the snow layer is open to the air, and the boundary condition is one of
no flow in the x direction (Ribando 1977). By following Combarnous and Bories' (1975) deriva-
tion of eq 7, we can derive a similar expression for subcritical flow in a layer with an open top.
Assuming that the layer is of infinite length, w 0 and dw/dz =0,

zT Tbot - (Tbot - Ttop) H (47)

where Ttop and Tbor refer to the temperature of the isothermal boundaries. For an incompres-
sible fluid, the equation of continuity is then

au ;-;
T- = 0. (48)

The one-dimensional form of Darcy's law is

u(z) =L- _ p-K pog(sinO)[I-(T-T,)j .  (49)ga ax P ,..

Taking the derivative with respect to z, we have

au K . . 2p K 0aTAzU x azax p  ° si ) -z "(50) ? -

This is simplified for our case because ap/az 0 and aT/az -AT/H, where ATis Tbot - Trop.
Integrating with respect to z, and applying u(H) 0, we get

u(z) = og3(sino) -T(z-H). (51)

Introducing the scaling factors KiH and H for velocity and distance, respectively, we redefine u

and z so that the nondimensional result is

u(z) = Ra(sino) (l-z). (52)

Figure 21 shows this analytical result along with numerical results for a sloped layer of aspect
ratio 6.0. The agreement is good at low angles of inclination, but deviates significantly at higher
angles. This discrepancy arises because end effects are included in the numerical model but not in
the analytical model.

At higher Rayleigh numbers, there may be multicellular convection in layers with an open top.
Given the results of the previous section, we expect that convection in such a layer will behave in
a manner similar to a layer with a closed top. Thus we expect the critical Rayleigh number for
the onset of Benard convection in a layer with permeable top and isothermal bottom to be

Rac --27.1  (53)Ra, -- O -OO(3
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Figure 21. Velocity profiles for convection in a sloped layer with a

permeable top. Analytical (eq 51) and numerical results for K =

2.4x 10 - 4 cm 2, AT =20°C Analytical results are for an infinitely
long layer, while numerical results are Jbr AR 6.0.

We also expect heat transfer results to follow the same patterns as in a closed layer, with Benard

convection dominating in infinite layers and both Rayleigh and Benard convection influencing

heat transfer in confined layers.
A numerical model has been developed and utilized to describe thermal convection in snow.

In particular, the influences of constant flux bottom and permeable top boundary conditions, of

phase change and of inclination of the snow cover have been described and quantified. Each is

found to have a significant effect on both the intensity and frequency of convection. The im-

portant topic of layering has not been discussed here, but has been dealt with in the literature and

is well understood. In the following sections, we discuss experiments performed in an effort to
further test our numerical model, and then apply the findings of this section in discussing the im-

portance of convection in snow covers.

EXPERIMENTS

Introduction
We now experiment with convection through a horizontal porous layer that is confined, with

a warm bottom and cool top. Similar experiments have frequently been done by others working
with porous media, but some significant differences exist. Here the lower thermal boundary con-

dition is a constant flux, rather than a constant temperature boundary as has been used previously.
In addition, when snow is used, phase change effects are an important component of the heat

transfer.
We will describe the apparatus used, the data acquisition equipment and the data analysis.

The experimental results are presented in the next section and we compare these results with rel-

evant numerical and theoretical results.

Experimental apparatus

Experiments were done using glass beads with air as the fluid, glass beads with water and dry
snow with air. The apparatus used in the glass bead experiments was substantially different from
that used in the snow experiments, but the data collection system was essentially the same.
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Experiments were first performed on glass beads to gain experience in doing experiments on dep
natural convection before moving to the more difficult and unknown problems of convection in
snow. Figure 22 shows the apparatus used for the glass bead experiments. At the top boundary
cold air was blown over an aluminum plate; the air temperature was kept constant by using a heat-
er, connected to a temperature controller. At the bottom boundary, electric heat pads were used
to supply the constant heat flux. The flux rate was controlled by regulating the voltage input us-
ing a variable power supply. The glass bead layer was approximately 40 by 40 cm by 1c cm deep.
When water was the saturating fluid, a plastic liner was used to retain it..

Figure 23a shows a three-dimensional view of the snow experiment, while Figures 23b and c%
are schematics of the experiment. Because of the low thermal conductivity of snow, heat losses.... '"

out the sides would have been unacceptably large if the same apparatus was used for both glass q
beads and snow. A guarded technique similar to that of Buretta and Berman (1976) was used withi. -i- '}

a tall, narrow snow sample (50 by 40 cm by 10 cm high) surrounded by polystyrene insulation.

The large sides (i.e., front and back) had identical snow samples on the other side of the insulation.
By heating the bottoms and cooling the tops, we could maintain similar temperature profiles in-
side and outside the insulation, thus reducing the driving forces for heat loss from the central snow

sample. The narrow ends had a loose insulation composed of styrofoam packing materials outside
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Figure 23 (cont 'd). Apparatus for snow experiments.

the polystyrene slabs. This loose insulation was

also cooled on the top and heated on the bottom.

Each heater was wired to a separate voltage source,

so that temperature profides in each snow sample

could be matched as closely as possible. However, remperoture

only the central snow sample was used for data Controller

collection. 7- Probe

The top boundary for the snow experiments -- i Cold Plate

was an aluminum cooling plate through which Pump

cold glycol flowed (Fig. 24). In essence, the cool- Bolt

ing plate was a rectangular box, with internal di- e, s Brine Line

mensions of about 50 by 50 cm by 2 cm deep.

The glycol was cooled by a copper coil through
which the refrigerant flowed. The glycol was

kept at a constant temperature by using a small Figure 24. Glycol supply system for the

heater with an on-off temperature controller, snow experiments.
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Figure 25. Temperature measurement apparatus

and thermocouple placement.

Control of the glycol temperature was good enough to eliminate cyclic temperature variations at

the top snow surface. .
The temperature measurement system (Fig. 25) consisted of 33 copper-constantan (Type T)

thermocouples, wired to a 36-position switch that fed a Fluke digital thermometer (accuracy
±0.10C). Thermocouples were distributed in the central snow sample as illustrated in Figure 25.

Their accuracy was verified using an ice-water bath between each experiment. In each check, the
thermocouples read either -0. 1 or -0.20 C. Probably a slight offset existed in the Fluke but the

offset was not significant since we were mostly interested in temperature differences. The uncer-
tainty in the thermocouple measurements was taken as ±0.1 °C, which is negligible.

From the experimental data we calculated the net vertical heat flux through and effective ther-

mal conductivity of 2ach sample. A plot of effective thermal conductivity versus net heat flux
has the same physical meaning as a plot of Nusselt number versus Rayleigh number when the Ray-

leigh number is based on a flux boundary condition. The dimensional form is used for clarity.
In these experiments the temperature profiles and the heat input at the bottom boundary were

measured directly. If no heat was lost through the boundaries of the experiment, then the net
vertical heat flux was simply the heat input per unit area. However, heat did flow through the

sidewalls. These lateral heat flows must be accounted for in the calculation of the net vertical

heat flux but the accuracy of the computation is limited by the knowledge we have of the temper-

ature distributions inside and outside the sidewalls.
Lateral heat flows were calculated using the temperature difference across the midpoint of the

insulation. If the vertical temperature profiles inside and outside the sidewalls are both linear,

then the temperature difference across the sidewall also varies linearly with height so that the aver-
age temperature difference is that at the midpoint. Unfortunately, we have no means to deduce

how close the profiles were to linear and thus the maximum value of the uncertainty in the heat
flux calculation was taken to be the total calculated heat flux through the sidewalls.
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RECOMMENDATIONS

In this work, tile means by which a fairly complete understanding of convection ii snow might
be achieved are developed. Ilowever, definitive conclusions cannot be made because we lack a
good quantitative understanding of many fundamental processes in and properties of snow.

Foremost among thesL ,,ps is a lack of knowledge of just how much vapor is transferred through
snow by diffusion. In essence, we do not know the macroscopic (effective) diffusivity of water
vapor through snow. Simple experiments done 20 or 30 years ago constitute our entire knowledge.
These results supply hints, but in many ways seem inconsistent with our present understanding
of vapor transfer through snow.

Related to our lack of understanding of mass transfer through snow, but with further compli-
cations of its own, is the subject of heat transfer. At present, our knowledge of thermal conduc-
tivity is limited to widely scattered data on effective thermal conductivity, which lump together
conduction through ice, conduction through air and latent heat transfer due to vapor diffusion.
Our understanding of the relative contribution of each component is purely speculative. A thor-
ough understanding of how heat is transferred through snow is important not only in macroscop-
ic treatments of snow like this, but also in microscopic descriptions of the snow metamorphism
process.

Some understanding of the macroscopic diffusivity of snow could be achieved by measuring
effective thermal conductivity as a function of temperature only. In addition, a knowledge of
the tortuosity of the ice lattice can be gained by measuring the electrical resistance of snow. By
coordinating the two efforts, it is felt that a better understanding of heat transfer through snow
is possible. Calculation of diffusion coefficients might also be possible with some recent models
of local vapor transport.

Our knowledge of snow properties in field situations could also be improved. In particular,
it would be interesting to see thermal conductivity and permeability measurements done at the
same field sites. This could give us a much better idea of the ways the two are related, and allow

a more definite statement concerning the frequency with which convection takes place.
As was indicated earlier, these experiments on convection in snow should be extended to test

the initial results. It seems important to measure the permeability of the sample, so that more
definite conclusions can be made regarding the agreement between experiment and theory. In
addition, sensitive experiments are needed to confirm the validity of theories on the role of
phase change on convection. The experimental difficulties of doing very accurate heat transfer
experiments on snow are apparent and such experiments will require much time and patience.

Finally, experiments aimed at understanding the rolc of convection in snow metamorphism
are needed, along with better theoretical treatments. A fairly simple experiment would be to tilt
a sample of snow, so that convection is forced on the system. In this manner, both convection
perpendicular to the temperature gradient and convection parallel to the gradient could be
studied. AN
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SUMMARY

The purpose of this work was to investigate thermally driven flows through snow. Toward
this end, a numerical model was constructed and experiments were performed on snow and glass
beads.

The starting point of the investigation was a theory developed to describe flows through po-
rous media in general. Extensions of the theory were made using a numerical model that accounts
for boundary conditions of particular interest for the study of snow. Simple relations were de-
veloped, based on the results of the model, which can be used to predict heat transfer based on
the choice of the lower thermal boundary condition and the specification of the parameter Ra/
Rar. The relations are valid for either permeable or impermeable upper boundaries. For the
case of an isothermal lower boundary, the results fit existing experimental data as well or better -.
than analytical results. For a constant flux lower boundary, the results of our experiments agree
well with the present numerical calculations.

Latent heat terms accounting for phase change between water vapor and ice are included in a
unique energy equation used in the numerical model. These terms were found to be significant, .
especially at the low Rayleigh numbers of interest for snow. The phase change term can intensi-
fy or weaken convection, depending on the ratio of the macroscopic diffusivity to the thermal
conductivity of the snow. Phase change terms also have a small effect on the conditions for the
onset of convection.

Convection in sloped layers was also examined numerically. It was found that misunderstand-
ings existed in previous works dealing with convection in a sloped, porous layer. Here it is found
that the intensity of convection is not just a function of the parameter Ra cosO but that lateral con-

finement plays a very significant role. A physical explanation is offered that consistently explains
the observed results in terms of a transition from Benard type convection to Rayleigh type convec-
tion.

Analytical solutions were developed to describe the velocity field for convection in a sloped
layer with a permeable top at low Rayleigh numbers. The analytical solution agrees well with the
numerical model. The importance of layering on convection in sloped layers at low Rayleigh num-
bers is qualitatively explained.

Experiments indicate that there is natural convection through snow. Because of uncertainties
in the permeability, it was necessary to calibrate the modeling by inferring the critical heat flux
value from the observed onset of convection. Except for this one problem, agreement between
theory and experiment was good. The permeability implied by the critical heat flux we selected
is different from that which we would expect based on the few reported values in the literature.
This points to an obvious need for further experimental work on the physical properties of snow,
especially permeability.

The existing theory for the onset of convection in porous media was applied to two different
field settings. We found that convection is unlikely in the alpine regions of the North American
Rockies, but is likely to be very common in subarctic regions such as interior Alaska. Simple, uni-
cellular convection in sloped snowpacks is expected in both regions.

Finally, simple theories to describe the effects of convection on snow metamorphism were in-
troduced and applied. For velocities calculated from the modeling results, we found that convec- - -

tion should have little effect on snow crystal growth. However, convection was found to have a
substantial effect on the transfer of vapor through the snow cover. It seems possible that thermal
convection may not substantially increase the rate of metamorphism but might trigger the growth
of the more spectacular hollow crystals with scrolls and striations.
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Intuitively, it would seem that almost any convection would have an important impact on the
transfer of mass, given the slow rate at which vapor is transferred by diffusion. A simple method
of comparing macroscopic convective and diffusive fluxes is by examining the ratio

PP1,

ap , dT
Deff etaT dz-

For common values of dT/dz of 0.2°C/cm and v of 0.04 cm/s, this ratio is about 10, indicating
that convection is very important in the overall mass transfer process. This analysis says nothing

about what happens to individual grains, only about how much mass is transferred through the
snow.

The previous discussions indicate that while convection is important in moving vapor, it only
moves vapor past particles and has little impact on crystal growth. Thus, even when convection
occurs, snow metamorphism is controlled by the rate of local mass transfer. However, it seems
unreasonable to conclude that an order of magnitude increase in macroscopic mass flux leads to
no increase in local mass flux, so perhaps our means of quantifying mass transfer to a particle are

inadequate.
The above methods for describing the rates of mass transfer to a particle under convective-dif-

fusion conditions assume that the flow near the particle is entirely forced convection, that is, that
the transfer processes near the particle have little effect on the flow field. Donaghey (1980) es-
tablished the following criteria for the transition from forced to mixed free convection:

Gr/Re 2 < 0.3 forced convection

0.3 < Gr/Re2 < 16 mixed convection

16 < Gr/Re 2  free convection

where Gr is the Grashof number, defined as pf 2 gATL 3 /lf2. By defining the characteristic length
L as one particle diameter and defining the temperature difference as this length times an average
temperature gradient, we find that the Grashof number is about 0.055. For a velocity of 0.04 cm/s,
the Reynolds number is about 0.03, and thus the ratio Gr/Re is about 6. This indicates that even
over the limited range of one crystal diameter, buoyancy forces are important in adequately describ-
ing the flow field.

To fully analyze the effects of convection on snow metamorphism, it would seem to be necessary
to solve the fully coupled mass, energy and momentum equations around a particle. Because of the

complex geometries and mathematics, this is a formidable task, which can be addressed only by
numerical methods.

Finally, we note the experimental work of Keller and Hallet (1982) on ice crystal growth in a

convective environment. Although the supersaturations and velocities used were several orders of
magnitude greater than what we expect in snow, their results may be applicable. A key conclu-
sion of theirs was that even in the lower ranges of velocities investigated, the introduction of any
flow could change the crystal form from a solid type (plates, columns) to a skeletal type (den-

drites, needles). This transition took place even when the change in the growth rate was small.
They attributed the skeletal forms to enhanced vapor density gradients along the crystal face,
which leads to more rapid growth near corners. This suggests that the onset of convection in some
way may coincide with the onset of the growth of hollow crystals.
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Applications to snow metamorphism
Snow metamorphism is a process of crystal growth, the complex interaction of heat removal

from and mass transfer to a crystal with the kinetics of phase change at the crystal surface. In
this section, we concentrate on the mass transfer process, that is, on the means by which vapor
is transported from vapor source to sink, introducing various theoretical means of assessing the
importance of convection to the mass transfer process. This section is really more of a literature
review than new work, its intent is to point the way for future workers.

Colbeck (1983) assesses the effects of convection in terms of a ventilation factor, the amount
by which the mass growth rate is increased because of flow. This approach was developed by " "
cloud physicists as a means of assessing the influence of fall velocity on crystal growth rates (see
Prupacher and Klett [19781 for a thorough review). Although results vary somewhat, depending
on which correlation for the ventilation factor is used, in general it is safe to say that only at ve.
locities of about I cm/s or greater will the influence be substantial.

From Figure 14 we can see that a typical dimensionless maximum velocity for Rayleigh num-
bers just above the critical value is about 4.0. The scaling factor is K/H, or km /(pC p )fH, where
typical values are k,,. of 2.5x 10-' cal/cm s 0 C, pf of 1.36x 10 -3 g/cm 3 , C P of 0.24 cal/g °C and
11 of 100 cm. Then the dimensional velocity is w = 0.04 cm/s. This is approximately the same
velocity that results from solving eq 52 for Ra = 10.0 and an angle of 30', and thus is a good
choice as a typical velocity for use in estimating the effects of either Benard or Rayleigh convec-
tion.

Obviously, a velocity of 0.04 cm/s is well below that which the ventilation factor approach
suggests is important in mass transfer to a particle. However, it is not certain that the ventilation
factor approach is a valid one. The key parameter in describing flow around a particle is the Rey-
nolds number, defined as

pf vd

Re = (57)--
'If

where v is the undisturbed velocity. Reynolds numbers for flow around falling snow particles are
frequently in the range 1.0-10.0, large enough so that a laminar boundary layer develops. The
thickness of this boundary layer (which decreases with increasing Reynolds number) controls the
rate of mass transfer. The boundary layer is best thought of as the distance over which mass must
diffuse to get from the free stream concentration to the surface concentration. Thus, as the
boundary layer thickness decreases, the rate of mass transfer increases.

For thermal convection through snow, velocities are low enough so that the flow may be de-
scribed as creeping flow, in which viscous terms are important everywhere. The boundary layer
has no meaning in creeping flow situations (in effect, the boundary layer thickness is infinite), and
thus the boundary layer solutions should tell little about mass transfer during convection through

snow.
The effects of creeping flow on mass transfer to a single sphere have been solved by Acrivos

and Taylor (1962). Their results indicate that

Sh lPe+Pe 2
2 3

Sh I + P + in Pe + 0.03404 Pe2 + O(Pe3 ) (58)

for Pe < 1.0, where Pe is the Peclet number, de'ined as vd/D, where d is the particle diameter and
D the diffusion coefficient. In a rough sense, the Peclet number is the ratio of convective to dit-
fusive contributions. The Sherwood number Sh is similar to a ventilation coefficient. It describes
the actual increase in mass transfer when flow is added to the diffusion. For the velocities described
above, however, Peclet numbers are small and this solution predicts that flow has little impact on

mass transfer.
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isothermal. It is not known at this point whether the bottom boundary condition is a constant

temperature or a constant flux condition, and thus both will be considered. Applying the results

Irom Table I, we find the critical temperature difference

I0.6 0 C constant flux bottom
ATr

146.9 0 C isothermal bottom

While temperature differences of 30 0C may occur in alpine areas, they are certainly not common,

and thus this analysis would indicate that Benard type convection is probably not important in

alpine areas. In this analysis we have chosen values of the thermal conductivity and permeability

based on our best estimates of field conditions.
In subarctic regions, such as interior Alaska, convection is more likely. Trabant and Benson

(1972) report that snow densities are frequently around 0.2 g/cm 3 , and that by late winter the
snow cover can be composed primarily of depth hoar crystals. These may be as large as I cm.

Typical snow covers are 50-80 cm deep, and are commonly subjected to temperature differences

of 30°C. Although we have no permeability or thermal conductivity data for this region, it is
likely that the ratio of permeability to thermal conductivity is greater than for alpine snow covers

by at least an order of magnitude. This result indicates that convection may be common in re-

gions, such as interior Alaska, where large temperature gradients are imposed upon the snowpack.
We take these conclusions as tentative pending the acquisition of better data on permeability and

conductivity.
In this discussion, we have not accounted for the effects of phase change, layering or slope.

Phase change can raise or lower the critical temperature difference necessary for the onset of Be-
nard convection. For a conductivity of 2.Ox 10' cal/cm s 0C, the Lewis number is 1.0 when the

macroscopic diffusivity is 0.61 cm 2 /s and phase change has no effect on the onset of Benard con-

vection. If the diffusivity is higher, as Yen (1963) and Yosida (1955) have observed, the onset

of convection is at a higher temperature difference than we earlier calculated and vice versa at

lower diffusivities. For a diffusivity of 0.22 cm 2 /s, that of water vapor through air, and probably

a lower bound, the effect is to lower the critical temperature difference about 10%. If the diffu-

sivities found by Yen and Yosida are correct, the effect of phase change on the onset of convec-

tion is to increase the critical temperature difference by less than 10%.

The effects of layering are harder to quantify but are probably not negligible. However, in the

theoretical analysis, we used properties of snow that are conducive to the onset of convection.

Thus any layering effect would have a negative impact on convection. The exception to this is

when there are significant depth hoar layers, in which case the permeability of individual layers

can be substantially greater than the permeability used above. If the only layering is that ascrib-

able to the growth of depth hoar layers, then convection may be more likely than we have indi-

cated.
The onset of Benard convection in sloped layers is given by (see the Convection is Sloped Lay-

ers section)

Ra, Racr,()'"
Rac" - coso

where RaC,... is the critical Rayleigh number for a horizontal layer. Thus Benard convection is

less likely in a sloped layer than in a horizontal layer, In alpine areas it is very unlikely; while in 2
interior Alaska it is probably still common, since even for slopes of 300 the increase in the critical

temperature difference is only about 16%. However, it is important to remember that Rayleigh

convection, a single cell pattern flowing parallel to the slope, is important in all regions.
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APPLICATIONS AND CONCLUSIONS

In this section, the aim is to use what we have learned to determine the consequences of con-
vection in snow. The treatment is an introduction to what may be done with our present under-

standing of convection through snow.
We will focus on two topics. First, the theoretical treatment of the onset of convection is ap-

plied to natural snow covers in an attempt to determine just how common convection is under
existing conditions. Second, some approaches to modeling snow metamorphism under convec-
tive conditions are introduced.

Onset of Benard convection in seasonal snow covers
Previously, we developed the theoretical basis for predicting the onset of Benard convection,

based on the value of the Rayleigh number and the boundary conditions. This development al-
lows the prediction of the onset for either horizontal or sloped layers. Rayleigh convection will
occur for any inclined snow cover with an applied gradient. We calculated the critical conditions
for the onset of convection, and then indicated how common Benard convection might be under
naturally occurring conditions.

The Rayleigh number is defined in eq 5. Properties of the snow cover appear as the snowpack

depth H, the temperature difference based on boundary conditions AT, the intrinsic permeabili-
ty K and the thermal conductivity of the porous medium km . The remaining parameters are tem-
perature-dependent fluid properties or constants. For air, we use properties at typical conditions

of - 50 C and 10 Pa (=I atm) from Table 5. The Rayleigh number is then

ATHK
Ra =0.0105 km

In the Effects of Phase Change on Convection section, we showed that the correct thermal
conductivity to use was kmn, or that based on conduction only, i.e., not an effective conductivity
that includes vapor diffusion. We ignored both diffusive and convective phase change terms that
gave the same results as incorporating both components when the Lewis number is 1.0, a reason-
able approximation for low density, dry snow. Later in this section we will further discuss effects

of phase change on the onset of convection.

Unfortunately, no data are available that clearly delineate the contributions of conduction and
diffusion to the heat transfer process. In the Heat Transfer section, we estimated the contribution
of vapor diffusion to the effective thermal conductivity as about 2.5x 10' cal/cm s 'C for a value --

of the diffusion coefficient (proposed by Yosida 1955) of 0.85 cm2 /s. In alpine areas where the
growth of depth hoar is common, a usual snowpack density is about 0.25 g/cm' (Giddings and

LaChapelle 1962). Effective thermal conductivity data compiled by Mellor (1977) show that for
this density, effective thermal conductivities range from 2.5x 10 " to 6.Ox 10' cal/cm s °C. The
pure conduction conductivity is then probably around 2.5x 10' cal/cm s *C. %

For an arbitrary grain size of I mm, and a density of 0.25 g/cm 3 , Shimizu (1970) predicts a

permeability of 1.1 x 10 "
4 cm. For a snow cover 100 cm deep, the critical temperature difference " -

necessary for the onset of convection is

ATc, 1.73 Racr °C

The critical Rayleigh number is a function only of boundary conditions (ignoring phase change
effects). The soil/snow interface is relatively impermeable and the top boundary is normally per-
meable, although a wind or rain crust can reduce its permeability. The top boundary is in con.
tact with air that is very nearly at a constant temperature, thus the top snow boundary is nearly
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Figure 30. Temperature profiles for experiments with snow for two runs . .--

where convection occurred and one where it did not.
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Figu*re 31. Effective thermal conductivity versus net heazt flux. I
Solid line represents results of niumerical model without phase
change. Dashed line represents numerical results including
phase change with De, equal to 0. 05 cm2 /s. .- ',.
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vection does occur, with a value of critical heat flux of around 1 .to 'L cut Cm s. ('alculation

of the critical Rayleigh number for the onset of convection is difficult fOr snow, prinaril, because
of uncertainty in the permeability. Thermal conductivity was measured in our experiments and
thus poses no real problem.

A survey of the snow at the start of the experiment revealed an average grain site Of about I .5
mn. The snow used was from the bottom 5 cm of the snow cover, beneath a thick crust. The
large grains were formed by wet snow metamorphism followed by dry metamorphism because of
strong temperature gradients. The original snow layer was very permeable, as the grain clusters
formed by the wet snow metamorphism were still evident, although weakly bonded together. Ob-
servations of the snow at the end of the experiment indicated that there was no significant grain
growth during the experiment.

The sample was prepared by disaggregating the grain clusters and carefully filling the box, so
as to maintain as low a density as possible. Although care was taken, the snow in the box ap-
peared much less permeable than the layer outside. The density was 0,25 g/cm 3 .

There is much uncertainty over the intrinsic permeability of snow. Shimizu (1970) proposed
the formula

K 0.077d2 exp(-7.8 pJ/pw) (56)

for snow of mean diameter less than I mm. Shimizu measured the permeability of coarse-grained
snow at densities of 0.4 g/cm 3 or higher, and found a range of permeabilities of about 2.6x 10-'
to 5.1 x 10-5 cm2 . Bader (1939) measured permeabilities for coarse-grained snow and depth hoar
over the density range of our interest. He found 0.85x 10' < K < 1.36x 10-4 cm 2 for coarse-
grained snow, and 2.Ox 10"4 < K < 2.5x 10-4 cm 2 for depth hoar. Shimizu, however, believed
that Bader's experimental technique overestimates permeabilities. Finally, if we extrapolate Shi-

g mizu's formula to our case we calculate a permeability of 2.5x 10-4 cm 2 . This coincides with
Bader's upper bound, and thus is taken as the upper limit in this experiment. A lower limit is
probably in the range of l.Ox 10" cm 2 since Colbeck and Anderson's (1982) data suggest a per-

meability of lAx 10- cm 2 for our snow density.
Fluid properties are given in Table 4 and a thermal conductivity of 6.25x 10- cal/cm s'C is

estimated from the heat flow data. Using the properties of air at -20" C, the lowest critical heat
-1 flux that we calculate isqc, = 1.59x I0- cal/cm s. This is about a factor of 6 greater than the ob-

served onset point, a large discrepancy, especially for a lower bound. This apparently results from
a large error in the calculated permeability, which is not too surprising considering the uncertain-

>- ... ,.;. ty in permeability discussed above.
. - The temperature profiles shown in Figure 30 represent two cases where the thermal conductiv-

ity (Fig. 31) suggests that convection is occurring, and one case where it suggests that convection
is not occurring. The lateral profile for the case without convection in Figure 30a shows a drop
near the boundaries, but this may simply be caused by a slight displacement of these thermo-
couples. In any case the lateral temperature differences are too small compared to the error to

draw any conclusions. From the vertical profiles in Figure 30b, we see a temperature profile that
is characteristic of the centerline of a single longitudinal roll (see Fig, 2). One roll would also be
expected from the theoretical results of Tewari and Torrance (1981). When lateral heat fluxes of
the order observed in the experiment are included in our numerical model, we find that only very
near the critical Rayleigh number will the cellular form consist of two units. This could be the
case for the one experimental run shown here in which we did not expect convection. This Ray-
leigh number is the one nearest the estimated onset point in Figure 31. The model predicts that

. close to the critical Rayleigh number, the influence of convection on heat transfer is minimal. The
presence of convection is hard to deduce solely from the temperature profiles.
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Theoretical results for the mode of convec-" - Ru tion at the onset are not available for the con-

o 65 / stant flux bottom case. However, Tewari and
08 -4 Torrance (1981) solve for the onset form of

-V 0 /convection with an isothermal bottom and

C3 permeable top. From Table I we see that both
o . 06 the critical Rayleigh number and the critical

wave number are identical for the cases of iso-
thermal bottom, permeable top and flux bot-

/ tom, impermeable top. This is a mathemat-
/ ical consequence of there being one Neumann

02 type (specific gradient) condition for each

case. We then expect the form at the onset

I I I of convection to be also similar. For the di-

0 -02 -0 4 -06 -0 8 - 0 mensions of the current experiment, Tewari's
(T-To)/nT results indicated that four hexagonal cells

should be present. This was certainly not the
Figure 28. Vertical temperature profiles for case with the present experiment. The dis-
convective heat transfer in glass beads and agreement may be ascribable to the presence
water. Dashed line indicates the pure con- of the lateral heat fluxes discussed earlier.
duction solution. Although not dominant in the heat transfer

process, they may be significant enough to
alter the form of convection.

From this study with glass beads, three conclusions are apparent. First, that we can induce
and reasonably measure convection in porous media. Second, that it is necessary to better con-
trol the upper thermal boundary and the heat fluxes through the sides before doing experiments
on snow. Third, from a comparison of theoretical-numerical results with the experimental re-
sults, we can reasonably conclude that the assumption of a constant flux lower boundary condi-
tion was a sound one.

Snow
Results of the snow experiment are shown in Figure 29. Again, effective thermal conductiv-

ity is shown as a function of heat flux. We note that the experimental results indicate that con-

, . { I.- -:

b4"° 1 
"I°'f)i H I

Figure 29. Effective thermal conduc-

I tivity versus net vertical heat flux.
a ;, i Experimental data from snow ex-' ,,., ( 1 / " ')p e r im e n ts . . -

38

6'. 
"j,



0- Ro

- 65- 2 - ,40

I%

-042

0 12 3

a. y direction profile.

0- Ra

* 81

0 65
-02 4

-04

(T-TO) /AT

-06.-

0 I 2 3

b. x direction profile.

Figure 27. Horizontal temperature profiles for convective heat
transfer in experiments with glass beads and water.

ing down the sides. The magnitude of the lateral gradient increases as the Rayleigh number in-

creases, as we would expect for such a cell.
The magnitude of the lateral gradients could be enhanced both by temperature variations on

the top plate and by heat losses out the sides. The center of the top plate was always warmer
than the edges, and thus the returning fluid lost heat as it passed under the colder outer parts of

the plate. By comparing the heat fluxes out the sides with the heat fluxes that would have oc-
curred if the lateral profiles were only attributable to conduction, fluxes out the sides were only
about 1o0% of those calculated by the lateral gradient, and thus must be a relatively small contrib- @1

utor to the lateral temperature profiles.
The three-dimensional convection observed should lead to enhanced gradients near the top

and bottom surfaces, and to nearly isothermal conditions in the center. Figure 28 shows the di-
mensionless centerline temperature profiles for the three convective runs. The data show ihe ex-

pected trend, with the profile becoming more distorted as convection intensifies.
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Table 5. Properties of air and water.

(av/aT)P** Ptt P**

.fC) pfig/cm 3
)

* 
ufg/c m s) t( 0

C)t (0C") (cals/cm
5

OC) (cals/cm 'C
2

)

.- =Air

-20 1.40X 10' 1.61X 10 3.95X10 3  - 1.15XIO -

-10 1.31X 103  1.67X 10
4  3.80X 10

3  
- 0.98X 10' -

- 0 1.29XIO
3  1.72X10 4  3.66X103 - 0.85X IO1 -

10 1.25X 103 1,76X 10' 3,53X tO' - 0."SX t0 -
* 20 1.20X 103  1.81X 10

4  
3.41X 10' - 0.65X 10' -

40 1.13X103 1.91X10 4  
3.19X 103  

- 0.51X 101 -
60 1.06Xi0' 2.OOX 104 3.00X 103  - 0.40X 101 -
80 l.OOX 103 2.09X 104 3.83X 10' - 0.32X 10' -

100 0.95X 10 3  2.17X 104 2.68X 10 3  - 0.27XlO' -

Wa ter

10 I.O00X 103  1.310X10' - 10.37X 10' - 12.30X10'
20 0.998X 10' 1.000X 102  - 2.00X 10 3  - 1.99X 101
30 0.996X 103 0.796X 102 - 2.95X 103 - 2.32X 102
40 0.992X 103 0.653X 102 - 3.80X 103 - 2.42X 10'
50 0.988X103 0.547X 10' - 4.57X10

3  
- 2.41X10 2

60 0.983X 103 0.466X 10
2  - 5.28X 103 - 2.34X 102

70 0.978X 10' 0.404X 10' - 5.96X 103 - 2.25X 102

•Rcberson and Crowe (1980)

tHolman (1976)
• *Dorsey (194o)-(a V/a T)p :/pf

ttp:

3 av
=f P(-)p CP,

get qcr = 6.2x 10-2 cal/cm 2 s for air and qr. 1.31x 103 cal/cm 2 s for water.
Obviously, qe, for air is well out of the range of the experiments and thus convection is not

expected. Since the range of physical property variations with temperature is small compared to
the difference between the critical and experimental heat fluxes, there is no need to further con.
sider the temperature dependence of air properties. The discussion of the glass bead-air experi-

ment is thus concluded, having shown that experiment and theory agree well.
S'- For the glass bead and water experiments, choice of the proper temperature is important be-
* - cause the critical heat flux for the onset of convection predicted theoretically is within the range

observed experimentally. It is also important because fluid properties vary substantially, espe-
.*t cially at low temperatures. The runs at high values of heat flux were conducted with average tem-

peratures in the 250 to 30 0 C range, outside the temperature range where fluid property variations
"-.-" are most significant. Total temperature differences top to bottom were less than 150 C. Thus

we can conclude that our earlier calculation of the critical heat flux is within the range of 5-10%.
From Figure 26b we see that our calculated critical heat flux agrees well with the experimental

results.
S-.Above the critical Rayleigh number on Figure 26b, agreement between the experiments and
'-. the prediction of the numerical model are fair. Discrepancies may be introduced because the

model is two-dimensional, while either two-dimensional rolls or three-dimensional hexagorv-"
possible in the experiments. The cell form induced by convection is indicated by the steady-

state horizontal temperature profiles at the vertical midpoint. Figure 27 shows these tempera-
* ture profiles for the data points in which convection appeared to be occurring. Each indicates

that a three-dimensional cell existed, with warm fluid rising in the center and cool fluid return-
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Figure 26. Effective conductivity versus net vertical heat fluxqnt

where

km

(PCP )f

* -.. For a constant flux lower boundary, we earlier defined ATasqH/k,,,. Thus the critical heat
* ~flux for the onset of convection is given by

qc RaC Ppp)rK 2  (55)

9 For a constant flux bottom and an isothermal, impermeable top, the critical Rayleigh number
is (from Table 1) 27.1 Using k,, and K from Table 4 and fluid properties from Table 5, we

35



The net heat flux was calculated by adding all heat losses or gains to the heat input, and then

dividing by the area available for vertical heat flow. The effective thermal conductivity was cal-

culated by dividing the net heat flux by *he average gradient across the entire sample. A sample " -

calculation that illustrates this proced, s given in Appendix C.

EXPERIMENTAL RESULTS AND DISCUSSION

Glass beads
To compare the numerical results with the experimental results, we must know the physical

properties of each fluid and porous medium. The necessary properties of the bead compact are
the thermal conductivity k.. and the intrinsic permeability K. The values of thermal conductivi-

ty from the Luikov et al. (1968) model are in close agreement with those measured by Bau (1980),

and thus that model is a useful tool in our work.
Permeabilities may be estimated from the Carmen-Kozeny relationship (Wallis 1969)

K= d2 [ -E)] (54)

where d is a mean particle diameter and e the porosity. Bau (1980) measured permeabilities for
the same glass beads used here and found that this relation describes permeabilities well. Calcu-

lated parameters for our experiments are listed in Table 4.

Table 4 lists temperature-dependent fluid properties and a product as it appears in the Rayleigh

number. The values at 500 C and 30 0 C for air and water are used in the current discussion and,

later, the effects of temperature-dependent fluid properties are discussed.
The essence of the experimental and theoretical results with glass beads is showt, in Figures 26a

and b, which are plots of effective thermal conductivity versus net heat flux. The calculated km

corresponds to the horizontal line in Figure 26a, and in both cases the agreement with the experi-

ments is excellent. The inflection point in Figure 26b indicates the theoretical onset of convection,
with a corresponding increase in the rate of heat transfer. The horizontal lines indicate the region

where the heat flux is less than the critical value for the onset of convection. The value of ther-

mal conductivity used in this region is from the model of Luikov et al. (1969) and is tabulated in

Table 4. Above the critical heat flux, the effective thermal conductivity is predicted by eq 44,. .

which is a result from our numerical model.
The critical heat flux is calculated using the theory of convection in porous media presented in

the Background--Porous Media section. The Rayleigh number was earlier defined as (eq 5)

Ra= p 0 gATHK

Table 4. Physical properties for glass bead experiments.

O Saturating kf km* -
fluid (cal/cm S 'C) _e (calcm S 

0
C) Kt (cm

2
)

Air 5.35X 10 -s  0.40 9.62XI0
-  2.53XI0

-

Water 1.42X 1O-  0.44 1.94X 10 -' 3.77X 10- "

*From Luikov et al. (1968).
tCalculated from Carmen-Kozeny relation (eq 54).
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APPENDIX A: DERIVATION OF FINITE DIFFERENCE FORMULAE

Constant flux bottom (Fig. Al )-no phase change

2L.

Figure Al. Control volume at lower boundary.

Accumulation (71 7 Q)Ih t

Conduction At + A

+T 1 -h, 1  h.At + I hAt

h h7
Convection (u T), 2 At -(uT)i+,,, 2 - At -(wT),, 2 hEAt.

Final form:

(T4j" - 1  (l+ 1, 1 -Tj I + T- 1 + (Ti,2  Ti, 1 ~2
At h 2 h

X z

(( T -i (u T),v 2I) (1"7)j 1 /2

Constant flux bottom -adiabatic side corner (Fig. A2)

1.2L

UFigure A 2. Control volume at
left corner of lower boundary.

h h~

~Ip Accumulation =(T "~ T2,1)-
44
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Conduction -A+-At+ - At
h, 2 h 2 2

Convection -(uT)j+,,, z~ At -(wT) 1/2 - At

Final form:

(TQ+1' -T1' 1) (T'21 -Tj, 1) (T 1 ,2 - TI, )_2
=2 _ T__ + 2 2

(u T) j+ (wT)j+,,,
-2 -2

Opposite corner, final form:

X, nx, _T 1 - Tn.,,) (Tn..,2 - . ,I~ " 2 +2 +2
Ath2h2

2 (u T)n x- V (wT),11
+ -+ 2 -2

Formula for calculating Nusselt numbers for
isothermal boundaries

For these calculations, we assume steady state-bottom boundary (see Fig. AlI):

* Accumulation =0

Ti, - Ti,1 ) hz (Ti..., 1 - 7l) h2  IT T.i' 2 At+ ,tI
Conduction = h- At + -- At hx,- + h ,At.

hx 22 aZ h,

*.Convection =(uT)iI, 2  At 2U~+ -A (wT)l+ hxAt.

Final form:

*(IT 
\ (T 

1
i , 

1  
2Tj' + Ti..1,1) hz (Ti, 2  -Ti 11)

-((uT)i+~y, (uT)j_.1)Tj - (wT),I,

U Top boundary, final form:

I aT)\- (T1+1,.7, -- 2Tt,nz +1... ,nz) hz (Ti,nz- 1 -Ti,n2)
\azJih

x z

t+ ((uT)j.+% - (uT)i~ Lz (wT)nz-.
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• -~,.-

-. ' -,'2 Bottom corners (see Fig. A2):

- " - Accumulation =0

(T2 Tzi I t T 2TConduction = ( "" -At) + I,& - (L 2w'r'
h+ h, 2 \az 2

Convection = -(uT)I, -6t (wT),+,/, - t

Final form:

~aT 1 i h7u) 1 ~
"az (T2 1  - T.,, ) 2 +  (T1,2- Til) - (wT) + / " '

Opposite corner, final form:

(L = -X -- + (Tnx,2- T..'l) h 
'az , -, I n ,l h ,,

ili
+ ( u T ) " x -V - - ( w T ) + .

Top corners, final form, i 1:

":-- z = -(T2 nz -Ti nz) Lz ( T i ,n -I Tl .) h -+

+ (u T ) + '/ - (w T )n Z-/ 2"
hx

Top corners, final form, = nx:

(LT) (T .- ,. _n (Trx,n - r1 Tn,..:i T~~ ~~z = (X_,. o,.

'* -" - (uT) mv1  - -- (wT) n /,.

The Nusselt number is then given by:

aT nx- 1I-
i i =1 X a z/ i h x x+ ( L Z n / 2 + Z = z -

S I h R 8z i=Nu = =
nx AR

1=1

Formula for calculating Nuuelt number for

constant flux boundaries

Nu ((Tbot - T 0p
). )'
8 

=  hXj (T i - .
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APPENDIX B: COMPUTER PROGRAMS

Main program

C PRCGRAP TO CALCLLATE TI-ERMAL CCKVECTICK FLC6S IN FCP(LS PECIUM
C
C DIMENSION ARRAYS
C

.'.-. : IMENSION T(75921)*PSI(?5921),SPAFEi7tv2l)*Ui75921)tkI Eo I)

CIMENSION SOURCE(7!h.21)
OIMENSION A(75)9e(75)vC(75),R(75)

C
C CEFINE ARRAYS
C
C T: TEMPERATURE
C PSI: STREAP FUNCTION
C SFARE: SPARE FIELC, USED IN CALCULAIIONS FOR POTH FSI ;hC I
C 6: X DIRECTION VELOCITY (HORIZONTAL)
C w: Y DIRECTION VELOCITY (VERTICAL)
C SOURCE: RICHT tAKC SICE CF MCPENTLM EGLA7ION
C A9BsC COEFFICIENTS CF IMPLICIT FC FERN
C R RIGHT HAND SIDE OF IMPLICIT FO FORM
C
C CEFINE CONSTANTS
C
C CM: SCR RELAXATICN FACTCR
C HX: GRID SPACING IN X DIRECTION
C hZ: GRID SPACINC IN Z CIRrCTICN
C NX: NUMBER CF NCCES IN X rIRECTICN
C NZ: NUMBER OF NCDES IN Z CIRECTICN
C ASRAT: ASPECT RATIO* HOR/VERT,

. C THETA: ANGLE CF TILT, FROM ICRIZCNTAL t-
C CENVER: CCNVERECE REGUIREPENT FCR ITERATIVE
C SOLUTION OF STREAMFUNCTICN EQUATION.
C DELT: TIME STEP '
C RA: RAYLEICH NUPEER
C PERT: VALUE CF INITIAL TEmPERATURE CISTRIFUTION
C NITER: ITERATION NUMBER IN ADI ITERATIVE

. C NT: TIME STEP NUMBER
C
C READ CCNSTANTSC

PRINT 7C
READ (1,.) RA
PRINT 72
READ (W) NX

.- - READ (1,') NZ "iPRINT 83
READ (1,*) ASRAT
PRINT 83
READ (1,*) THETA

PRINT 74
READ (1t*) DELT
PR INT 75
READ (1,.) IFILE
IF (IFILE.NE.I) CCTC 15
PR INT 76
PRINT 77
READ (1,') FSEG

O 15 PRINT 78
READ (1') IPRINT
IF (IPRINT .NEe 1) GOTO 16
PRINT 81
READ (1,*) PSEG

16 PRINT 79
READ (1,'v IPSI
PRINT 83
READ (1,') ITEPF

76 FORMAT ('INPUT- SEQ: (I.E. IF SEO:!9EVERY FIFTH TIME STFP')
* 77 FORMAT ('WILL GENERATE RESULTS THAT ARE FILED)*)

78 FORMAT ('INPUT IFRINT, IPRINT:I WILL PRINT RESULTS')
79 FORMAT ('INPUT IFSI, IPSI:1 GIVES PERMEAELE TCP')
80 FORMAT ('INPUT ITEMP, ITEMP:1 GIVES CONSTANT FLUX POTTCM o )
81 FORMAT ('INPUT PSEQ: HOW OFTEN RESULTS ARE PRINTEC)
82 FORMAT ('INPUT K29 NUMBER CF NODES IN Z DIRECTION').
84 FORPAT ('IAPUT TIETAANGLE OF TILT FRCM HOR. IN DEGREE!')
83 FORMAT ('INPUT ASPECT RATIO (I-ORIZONTALiVERTICAL)')

" " 74 FORMAT ('INPUT DELTA T TE STEP')
75 FORMAT ('INPUT IFILE IF:I- RESULTS WILL BE FILED')
70 FORMAT ('INPUT RAYLEIGH NUPBER')
71 FORMAT ('NCTE THAT BOTH X kNO Z NUMPERS OF NODES')
73 FORMAT ('MUST MATCH THOSE OF THE INPUT FILES')
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72 FORMAT ('IkPUT NX, 'JUMBFR OF NODES IN X IRECTINI)
tX=ASqAT/fNX-I)

AR=HZ/Hx
THETA=THETA.3.141I9/18G.
Ak SQ =A 9 .

PE R T =1 .E- 2
NZM=NZ-I

I~RT
C

DO IC1=1 :1NX

I~ CCKTINLE

C TEMP PERTURBATION TO START FLOUS

T(%X92)=T(ftX92).FERT
C

C START CALCULATIONS HERE
C

IF (ITEMP.EG.1) PT=l

C

N I T EAR: C
CZ=OELT/(2 .*HZ.'2 )
CX=CELT/H2.*NX**2)

CO2 1=2*NXM

23 CONTINUE -RA'I'Z*SIN(THETA)*(T( T,.l)-T(IJ-1) )/2*

C SET SPARE FIELE TC ZERO AT ECUNEARIES
C FOR SCLUTICK OF STREAPFURCTICh EOLA7ION

DO 21 d:19NZ
SPAREII. )=E. C

C ~ SPARE (N :: =O:
21 CONTINUE

C2 CONTORNUEREL TPOY
C

IF(IPSI.NE.1) GCTO 1322
023 1=2,NXM

23 COTINUE-SINTHMETA*(3.*T ( IZ)-4.'T(yNZM),T(I ,NZ-2) ))

C
C A I S S T E S C AIM L C T A T P SN U NIxD C A O V R E C
C

102 NITER=NITER.1
01 FFMX=O.o
PSIMAX:O.0
PSIMIN=O.2
GO 30 J=2#PP

- DO0 32 1=2sNXM
A (I-1) ARSC
C (I-I)= 2*APSC O

* IF (J.NEoNZ) G070 5
R(I-1 --2.*PSI(1,NZ.1).42.-CN)*PST(INZ.SOURCE(,,J)
GOTO 32

5 R(I-1)±SOURCE(1,J)-PSI(I.J.I)-PSI (JJ-1).0(2.-CPR).PSI(1,J)
32 CONTIuE

CALL THOMF (AeBeCtRoNX-2)
00 38 1=2*NXP

SPARE(IA:)R(I-1)
COtTIt4UE

33 CONTINUE
* C

C STEP 2.9 INqFLICI T IN 7
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C
GO 33 1 2h X F

DO 34 J=2,1P

BCJ J )-2.-CM
C (JJ )1.

R(Jd):SCURCE(lI,j)-ARSG*(SPARE(I,1,oj)4SPARE(I-1,J)
1 -2. SPARE C IJ) )-OP*SPARE(I ,,)

34 CON.TINUE
A CNZM )2.

6 CALL THCMF (A,2,CRMP-1)
CC !5 z2 9mP

JJ=J-1
CIFF:ABS(R(JJ)-PSI(19J))
IF (EIFF.CT.f)IFFMX) DIFFPX=EIFF

IF (FSI(I ,.J).GT.PSIMAX) PS1MAX=PSI(IJ)
IF (PSI(Ij).LT.FS1MIN) PSIMIN=PSI (I9J)

35 CON71NUE
33 CONTINUE

C
C CALCULATE CONVERGENCE

C
CR IT=IFFPA/ AES (PS IMAX)+ABS(PSIIA N )+2.
IF (CR IT.G7.CONVER) GCTC 1'2
PR INT 12 9 PSIMAXiFPSIMIN

120 FORMAT (9PSIMAX=9,E12.4,3X.9PcIMINhE[12.4)
PR I hT 6 1 9NJITE Rp67 FORMAT C 9NJTER9I~q9CRIT=9F12.4)

C
C CALCULATE VELOCITI FIELD
C

00 !6 1=2ohXM
00 37 J=2,N2M

37 CONTINUE%
U(I,1)=-(4.*PSICI,2)-3.-PSItlIl.)-PSI (I,3))/(2.*HZ)

36 CCNT INLE
CO 31 J=2,INZM

1 CONTINUE
C

IF (IPSI.NE.1) 6070 IC3
CO 39 1=2,ftX0

W(INZ):(PSI(I1,rdNZ)-PSI(I-lNd))/(2.*HX)
! 9 CONTINUE

WtlNZ):(4..PSI(2,NZ)-3.*PSI(1,NZ)-PSII3.NZ)i1(2.*HX)
6(NxN23=(3.*PSI(NXN2)-4.-PSlINXPNZ).PSI(NX-2,NZ))/(Z.tFX)

C
*C NCW CALCULATE TEPPERATURE FIELC

C USING NON ITERATIVE ADI AS A T1IME STEPPING MEANS
C
C IMPLICIT IN Y
C

103 00 40 .j=MT.NZM
00 41 I1101

I *T(I...J-1) .C2*(2.4HZ*(WM.ABS(6M)) )
GOTO 8

7 6P=WII.2)/2.
PC I)=T(192)*CZ*2.*(2.-i2*hF-BSC.iP)))

L TCI1V'C*1.-CZ'(4.,2.*HZ*CUPABS(WP))))

8 IF (T.EQ.l) GOTO 3
IF CI.E~sfJX) GOTO 4

ACI)=CX*C-2.-HX*(LM*ABS(UM)))
ECI)=l..CxaC4.,t'X.(UP.APSCUF)-UM.AESCUM)3)
CCI)=CX*(-e..I-X*IUP-APSCLP)))
GOTO 41

3 UP=U12,.J)/2.

CC1)=CX*C-4.,2..I1X.CUP-AES(LP)))
GOTO 41

4 UM:U(Nx-1,..)12.
A(NX):CX.C-4.-2.et4x.4uM.A6SIUP)))
ECNX)=1.C$.C.-2.I'X*CLMo-AES (UN)))

741 CONTINUE
95 FORMAT (E12.493)(oEl2o493XoEl2.493X9El2o4)

C
C
C SCLVE
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C
CALL TIhOMF CAv89CRNX)
00 43 I1,NX

SPARE (Ij )=R (I)
96 FORPAT (4X*E12.4)

43 COKTINLE
43 CONTINUE

C
C IMPLICIT IN Z

00 44 I:1,NA
SPARE (I NZ :-i .O

44 CONTINUE
00 532 I,NX

IF (ITEMP.hE.1) GCTC 9
WP:W (1#23/2.
B(1)=l..CZs(4..2.*HZ*fUP.4ES(wP3))
C(1)=Ci'(-4..2..IiZ.(bP-ABS(WP3))

9 CC tl , =PTsk2F
JJ=J-MT.1
IF (,J.EQ.1) GOTO 11

A(JJ)=CZ*C-2.-HZ*(WM*ABS(WM 33)
8(JJ3:1..CZ*(4..HZ.(WPAS(P-W?'*ABS(WIi333
CC 3:J)CZa(-2..HZ*( WP-ABS (hP)33

11 IF (I.EG.13 GCTC 1
IF (I*EQ.NX) GOTO 2
UP:L(IvJ34U(I.1,.J))i2.

UN: I LII, 3 'U(I-I ,J 33/*2.-k&U-ECP)*PR~v
1 (1.-CX*14..Hx*IUP.ABSIUPI-UM.ABS(UM333 3

SPARE II-1.J).CX*(2.'H)*IUM.ABS(UM33 3
COTO 51

I UP=L(29,./2.
R(JJ):SPARE(1,J)aI1.-CX*(4.42.*HX*(UP.ABS(UP33334
SPARE(2,.43*CX' (4.-2.*MX*(UP-AES(UP3)I
COTO 51

2 LM=U(NX-I,)/2.
R(JJ):SPARE(NXMJ3,CXI4.2.*KX*(UM4ABSU'3))*+

I SPARE(NX,.J3'I1..CX.-4.2.9-X*(UM-ABS~ym3)))
51 CON71NUE

C
C FCLLOWIP4G IS FCR CCNSTANT HEAT FLUX ONLY
C

IF (ITEMP.Egel) R(1 3R Cl 3..CZ*HZ
RINZ-PT)=RINZ-MT3-CINZ-MT3'SFDREII.NZ)

00 53 J=MTNZP
.JJ=J-l
IF (PT.EG.13 JJ=J

53 CON71NUE
C
C SOLVE
C

CALL THCMF (A*B*CvRo&Z-MT3
DO 52 J=FT9NZP

T (I 190 =R IJ-MT~l)
52 CONTINUE

50 CONTINLE
C

C
C NOW PRINT CR FILE IF SO DESIGKATEC
C

IF (IPRIAT.NE.1) COCTO Ir4
AA=FLOAT(NT)IFSEG
b8I NT INT/PSEG)
IF (AA.KE.EB) CCTC IC4
PRINT fit

65 FORMAT (*VELOCITY FIELC')
DO 199 J:1.NZ

M=NZ. 1-d
PRINT 886et )W4,3'(,),~i,)V1~

199 CONTINUE
PRINT 66

66 FORMAT (#TEMPERATURE FIELD')

M =N Z * I- .
PRINT 88, T(2,M3,T(4,M3,T16,P3 ,T(PP3,T(l1,M)

200 CONTINUE
c
104 IF (IFILE.t.E.1) C-CTO 1S5
C

AA=FLOAT(NT)/FSEC
68:1PT NT/FSEQ)
IF (AA*NE#EB3 G0TO 115
PRINT 87

87 FORMAT (' CO YCL WISH TO FILE, YES=I*NO=C'3
READ (1,') IFILE2
PRINT 187

187 FORM4AT ('00 YOU IbISH TO CHANGE TIPE STEP: YES=10'
READ (1,03 ITIPE
IF (ITIMEeNEe13 CCTC 188
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PR INT 8Bq
189 FORMAT (OIFPUT NE6 TIMIE STEP*)

READ (Its) CELT
188 PRINT 19L
190 FORMAT (ODC YOU 6ISH TO CHANGE RAs VES=19)

READ (19'3 IRA
IF (IRA .%E. 1) CCC 191
PR INT 192

192 FORMAT ('1PKPUT P.1W PAR)
READ (1,') RAg

191 PRINT 19!
193 FORMOAT ('CC 'VOU 6ISI- TO CHAN.CE ANCLEt YES=1'3

READ (19t) IANG
IF (IANG.NE.1) C-CTO 195
PRINT 194

194 FORMAT 'OICPLT PLE' ANGLE, IN CEGPEESO)
READ (1**) ANG
ANG=3. 14155/18C.

195 IF (IFILE2.NE.1) COTC 1C5
IWRITP=I W PI 1
CALL GFILES (16RRT,2sTFILENA"E99c)
COL GFILE (Im:1,N9PSFXNM9
GAL GILE (=IWRT.2'SIINM

WRITE (IWRIT955) (T(Iqd) 9 4=1,NI)
WRITE (IWRTYP,59) (PSI(YJ) 9 ,.=19NZ)

I goo CONTINUE
CALL CLOSALJ

CWI=WI*
C
C NOCOPT NUSL NUBR TOAN OT,
C NW CALUTE CCPSLVERNCERSE OPN ENERCPY
C C CALCLATE CVRGNEN.HC EEG
C OSVACN
C TTMNSETNME
C~ OOTTNUNSSLTNUBE

00 59 1=2.NXM

WP=W(1,1)/2.

* (T(192)-T(1 .1) /AR
*(HZ/4.)*(T( I,1)w(UP.ABS(UF)-UM.+ABS(UMP))

. *(IX/2.).((WP-ABS(WP))'T (I,2)4(WP4ABS(WP))*T(!,1))
59 CONTINUE

LtlU(2 *I/
hP:W,(1.*2)/2.

#* 14)(T(I1I1)(UP+AES(UFJ?
# T(2,1)'(LP-AES(LP))) + (T(1,2)(WP-A.S(WP))
+ T(1,1)'(WP4ABS(WP)))*(HX/s.3

UM=U(NX-1,1) /2.
WP~wfkx*2)12.
O-OTNU=BOTNL-).!' (AR.(T(NXM,1 )-T(N),1) )

(TfX.~v2)-T(1Y(,1))lAR) - (Z4 TfNI
* (UP'A+AS(LMl)) #T(N~vI)*(LV-AES(UM) ))

I (wP*ABS(kP)))
C
C TOP NUSSELT NUP'EER
C

TOPNU=C.',
00 6.j 1z2§NXM

L;P:jU(I1jqZ)+U(IqNZ))/2.

T CPNU=T CPNU . *'AR. (T(I1.1, N) .141-1.PLZ -2. .T(INZ))

- (HZ/q.).(T(INZ) *EUP4ABS(UP)-UM.ABS(UM))
I *T( I.1,PZ)*(UP-APSfUF)) - T(I-1,N.)(U(4ABS(Lw ))l
I .*(I.X/2.)*(T( INZ)*(WM-AE (hM))T(INM)(W.*1FS(hP)3)

60 CONTINULE
WM=(U(1,NZP)#W(1,NZ))/2*
UP=U(2 NZ)i2.

1 -(H124. 3'(T(1,NZ)*(UP.ABS(UP ))4T(2,NZ)'4UP-ABS(UF 33)
I *(HX/4.).4T(1,NZMA).(WM-AES(WP) 3.T(1,NZ)'(WM*ABS(IM)))

WM=(W(KX90k2M)#W(P,~,N2))/2.
61A =U(NXld h I )/12.
TOPNU=TOPNL*. t * (AR (hXM NZ )-T (?%X Al)

I *2.5*(T(N~qhZ4)-T(NX9NZ) 3/AR
I *(-l/4.1v(r(NXsNZl*(UM AESCLpq)) + TtkxmqNZI.
I (UP#ABS(LP)3) * (t-X/4.3a(T(IRXN2)'(WP4-ARS(WM33)

1 #TEN),NZM)*(WM4*BSIUM)))
TOPNU=TOPU/ASRAT 7
BOTNU=EOTNUI ASP AT
BAL-(AEIS(TCPNU-EC7NU33/AESECIKU3
PRINT 63, TOPNUEOTNUBAL

C
IF (NT.L.T*IOOC) C0T0 10C
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C
C

61 FORMAT (1XNITER=9',U)
62 FORM14AT (!:X 9NT= 0 11)
6.3 FCRPAT ( 'TCPNU=: XEI.4 'ECTI.U:', XE12 .A,!X,

0PALANCE:',IXvE12 .4)
88 FORMAT (642XtE12.4))
99 FORMAT (11(E1Io~qIX))

STCP
END

$INSERT THOMFPJ

Plotting routine

C PROGRAM TC PLCT [ATA FILES
C

ECIPENSICK L(1iC,21)tX14)92(4) *CL (4)qXPLT(4) *ZPLT(4)
C

PR I NT
E.FCRMAT (#INPUT TIETAANGLE BETiwEEN X AXIS ANC ICR12CNT!Lf)

READ (1,'*) THETA
PR INT 51

51 FORPAT ('INPUT LEKGTF. (IN INCI-ES) 3F WoZ AXES')
READ (I,') XL91L
CALL PLOYS(.)
ZMAX=1
PRINT 52
REAG (1,') AR

52 FORMAT ('*INPUT ASPECT RATIO$)
XMAX=AR
I L=XL/XMAXZL=ZL/2MA(
P R INT 6 C

6" FO0RM1,A T ('I 1NP UT NUMPER OF HORIZONTAL NODES')
READ (It*) MX
FA INT 61

E1 FORMAT (*INPUT NUMPER OF VERTICAL NEDES')
READ (1,') M2
CELX=XAMAX/ (MX-I )
CELZ=ZPA~t/ (Z- 1)

C
1?O PRINT 63
63 FORMAT (OINPUT CATA FILE NAMES)

CALL GFILES 459190FILENAME19 )

PRINT 75
75 FORMAT ('WI-AT CCLOR PEN')

READ (19t) IPEK
00 11 I1.px

READ (598,^) (E(I,4J)o J=.,Mi)
10 CONTINUE

CALL CLOSAL
80 FORMAT (11(E11.491X))

C
C THIS SECTION SPECIFIES THE RANGE AND CETAIL GESIREC
C FCR TIE FICT.
C

010 A X=0 . 0
CO 2C 1=1*Px
00 20 J=1,"Z

I F (O(11 W) .GT. DMAX) CMAX=0(19J)
I F ( D t19J ) *LT. DMIN) CMIN:O(I,.j)

20 CONTINUE
PRINT 659 CMAX

65 FORMAT ('MAX VALLE=0v1X*E12.4)
PR INT 669 ERIN

66 FORPAT (SPIN WALLE=9s1XsE12.4)
PRINT E7

67 FORM4AT ('INPUT MAXIM4UM VALUE CF CCNTOUR LINE DESIRED')
READ (1*') OMAY
FR I&T 68

68 FORMAT ('INPUT CESIRED MINIMUM VALUE CF CCNTOUR LIKES')
READ (1t*) OMIN
PRINT 69

69 FORPAT ('IRPUT CESIREC NUPBER CF CONTOUR LINES')
READ (1,90 NIINTS
PRINT 70

70 FORMAT ('INPUT LIKE TYPE: SEE PANLAL FOR LINE TYPE CEF.')
READ (1,.) hTYFE

C
C ACTUAL PLO71ING PEGINS HERE
C
C

DELD=(Cf4AX-CMIN ) A NLIES-I)
DPLT:OM4IN
MXF="X-1

HzZf4AX*ZL
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CALL NEWPEKdIPEN)
CO 25 hzl.KLINES

CO !3 1 =1 9p x F
DO0 30 J=:1,MZp

X(1)=(TI)*CELX
X 2) 1 *CELX
( (3 :X f(2)I. ,.
A(4)=A( ,)

Z(3) :J 'ELZ

1 (4) =2 ( )
CL (1 )= C( (I
CL (2 )D(I1 J).
CL ( )=C( I.1,J.1)

IPLT~l
00 31 K=194

IF (K.EG.4) KP:1
IF ((!PLT.GT.DL(K)) .AND. (OPLT.GT.OL(KP))) GCTC 'l
IF (4CPLT.LT.DL(K)) .AND. (OPLT.LT.CL(KP))) cCT
PCI ATE :AES( (CPLT-CL (K))I(CL (KP)-CL (K)))
XFLT (IPIT )=X(K )*XL
IF (Z(K ).EQ.l(KP) ) XFLT( IPLT)=(X(K)*POLATE*

X(leP) -X(K ) )) *
ZFLT(IFLT)=Z(K)*ZL
IF (X(M).EG.X(KP)l ZFLT ( PLT)=fZ(K),POLATE*

(2 (VP)-Z (K) ) ) ZL
IPLT=IPLT.1

31 CONT INUE
IF ( IPLT.EG.I) C-OTO !
IF (IPLT.GT.3) GOTO !0)
IF ( THETA.EO.0) GOTG 1 7
CALL AN'GLE (XPLT(1)9ZPLT()T-ETA,I-)
CALL ANGLE (xPLT(2)9ZPLT(2) ,TIET19l-)

102 CALL PLOT (XPL7(1)*ZPLT(1)91)
CALL PLOT (XPLT(2),ZPLT(2)*ITrPE)

30 CONTINUE
CPLT=CPLT+CELE

25 CONTINUE
C

PR INT 71
71 FCRPIAT ( VCC VCL 6 IS)- TC PLCT PCRE D(TA: YES=10)

READ (1,.*) NPLOT
IF (NPLOT .EQ. 1) GOTO 1):
PR INT 72

72 FORMAT (OCC YCL UISI- TO PLCT (RIC: YES:19'
READ (1,') IGRID
IF (IGRID .NE. I3 GOTO 121

C
C PLOT GRIC
C

PRINT 75
READ C19*) IPEN
CALL NEWPEM(PER)
00 40 .J=1,NZ

x1=o.o
20O(.J-1 )*CELZ*ZL
Z~22
IF (THETA.NE.C) CALL ANGLE (XlZ22.THETA9H)
CALL PLCT (X1,2,3)
DO 40 I:29MX

X1:( I-1)*CELX*XL
22=ZC
IF (TPETA.KE.C) CALL ANGLE 'Xl9Z2*THETAqH)
CALL PLOT (Xl,22,2)

40 CONTINUE
C

GO 41 1=1lPX
Z I 0.
XO:(I-I 3'CEA.X#XL
X2=XO
IF (TfETA.NE.") CALL ANGLE (X2qZl9THETAH)
CALL PLCT (X2,2193)
CC 41 ;:2 9MI

ZI: C.- 1) CELZ*ZL
X2=X C
IF (THETA.NE.0) CALL AhCLE()2,ZITFETA9I-)
CALL PLOT (A29Z1,2)

41 CONTINUE
C
C PLOT BOUNDARIES IF SD DESIRED
c

101 PRIN4T 73
73 FORPAT ('CC 'CCL bISf- TO PLCT ECUK[ARIES: YES=19)

READ (1,') IBNC
IF (I9ND.NEaI) C-C70 113
PRINT 75
READ (1,') IFEft
CALL NEWPEN(IPEN)

59



00 9c J:I,02

IF 1) 2C= L
IF (J.EC.2) ZC=ZL*ZMAX
Z2=ZO
IF (TIETA.NE.C) CALL ANGLE (X1,Z~tTI-ETA,P)
CALL FLCT (X,2!
00 50 1 =2,MX

Xl=( I-1)*CELX.XL
Z2=ZC
IF 1lHETA.KE.0) CtLL AKCLE (XlZ29T-FTA,-)
CALL PLOT 0~19Z212)

9 CONTI~uE

O 51 0 . C
IF (I.EC.l) )(C=,,.(
IF (I.EC.2) XC=XL*XMAX

IF (TNETA4.NE.C) CALL ANGLE IX2,Zl1,THETAgH)
CALL PLCT ( X 29Z I, 3
OC 51 1 =2 9?0Z

il=C,-.l*EELZZL
X2=XC
IF (lHET4.KE.C) CALL ANCLE UX2,21,IHE7AH)
CALL PLOT (X2,ZI,2)91 CONT INUE

1 03 CALL PLOT ICt.59
STOP
END

I INSERT ANGLE
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APPENDIX C: SAMPLE CALCULATIONS

D~ata from snow experiment 2 F-ebruary 1984.

Let-201 Rih ak -201 Frn

-106 -12 3 -116 -126 -112 -13 0-116 -12 1-13 1

-4.8 -48
-99 -99

F'igure C1. Relative dimtensions ofjsnow sample alongz with measured

hnperatures (0C).

V- = 5.83 V
R = 47.4 Q

Qj. V2 R =0.71 W 0. 1714 czl/s

Side fluxes = iA fl.4 (area of heat transfer) (AT/Az)
A is the thertmal .Jctivity of the polystyrene insulation, and is

kin = 6.2 x 10- cal/cm s0C.

Right = (6 .2x 10-5 x ( 50x 10 Ct1 2 ) X (1I .40 C/5 cm) =+8.4 7x 10O' cal/s
Left =(0.2x 10- ) x (50x 10 cm 2 ) X (I .70C/5 cm) = +1.03x 10-' cal/s

Front =(6.2 x 10--) x (50x 40 cm2 Ix (1.00CIO cmi) =-1.21 x 10-2 cal/s

Back = (6.2x 10-) x (50x 40 Cm,2) X (I .40 C/l10 cm) =-1 .69x 10-2 cal/s

sumn of side fluxes = -1 .02x 10-2 cal/s
'of input = 0.0102/0.1714 = 5.9 /

Bottom =(6.2x 10- ) x (40x 10 cn 2) X (5.1"C113 cm)= -1.26x 10-2 cal/s

Net heat flow =0.1714

-0 .0102
-0.0126

0.1486 cal/s

net heat flux = net heat flow per area
= 0.1486 cal/s per 400 cm2

qnt= 3.7 x lncal/cmn
effective thermal conductivity (k off) = q(1,/( AT/Az)

A~ff = 3.7x 10 /(4.8- (-20. 1))/50)
k~f= 1 .1 8X 10-3 cal/cm s0C.

IUncertaintv in Af'is estimated by multiplying fraction heat loss through the sides by the ther-

mal conductivity.

uncertainty in k0 ff 1I.18x 10' x 0.059 ±6,96x 10-' cal/cni s0C.
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A facsimile catalog card in Library of Congress MARC
format is reproduced below.

Powers, D.J.
Thermal convection in snow / by D.J. Powers, S.C. Colbeck

and K. O'Neill. Hanover, N.H.: U.S. Army Cold Regions
Research and Engineering Laboratory; Springfield, Va.:
available from National Technical Information Service,

* 1985.
vi, 68 p., illus.; 28 cm. (CRREL Report 85-9.)
Prepared for Office of the Chief of Engineers by U.S.

Army Cold Regions Research and Engineering Laboratory
* under DA Project 4A161102AT24.
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